K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\dfrac{4x^4+3x^3}{-x^3}+\dfrac{15x^2+6x}{3x}=0\)

=>\(-4x-3+5x+2=0\)

=>x-1=0

=>x=1

b: \(\left(3x^2-\dfrac{1}{3}x\right):x+\left(2-3x\right)^2:\left(3x-2\right)=0\)

=>\(3x-\dfrac{1}{3}+\dfrac{\left(3x-2\right)^2}{3x-2}=0\)

=>\(3x-\dfrac{1}{3}+3x-2=0\)

=>\(6x=\dfrac{7}{3}\)

=>\(x=\dfrac{7}{3}:6=\dfrac{7}{18}\)

c: \(6x^2-\left(2x+1\right)\left(3x-2\right)-x=-2\)

=>\(6x^2-\left(6x^2-4x+3x-2\right)-x+2=0\)

=>\(6x^2-6x^2+x+2-x+2=0\)

=>4=0(vô lý)

vậy: Phương trình vô nghiệm

AB//CD

=>\(\widehat{B}+\widehat{C}=180^0\)

=>\(\widehat{C}+\widehat{C}+40^0=180^0\)

=>\(2\cdot\widehat{C}=180^0-40^0=140^0\)

=>\(\widehat{C}=70^0\)

\(\widehat{B}=70^0+40^0=110^0\)

ABCD là hình thang có AB//CD
=>\(\widehat{A}+\widehat{D}=180^0\)(hai góc trong cùng phía)

=>\(2\cdot\widehat{D}+\widehat{D}=180^0\)

=>\(3\widehat{D}=180^0\)

=>\(\widehat{D}=60^0\)

\(\widehat{A}=2\cdot60^0=120^0\)

12 tháng 8

- Nếu n là số lẻ :

\(2024^n=4^n.506^n=\overline{...6}.\overline{...6}=\overline{...6}\) 

\(\Rightarrow2024^n-1=\overline{.....5}⋮10^{2023}=\overline{...0}\)

- Nếu n là số chẵn :

\(2024^n=4^n.506^n=\overline{...1}.\overline{...6}=\overline{...6}\)

\(\Rightarrow2024^n-1=\overline{.....5}⋮10^{2023}=\overline{...0}\)

Vậy suy ra \(đpcm\)

15 tháng 8

Bạn Hoàng Anh ơi mik cân vuông cân bạn ạ

\(E=2x^2+4x+13\)

\(=2\left(x^2+2x+\dfrac{13}{2}\right)\)

\(=2\left(x^2+2x+1+\dfrac{11}{2}\right)\)

\(=2\left(x+1\right)^2+11>=11>0\forall x\)

\(F=2x^2-3x+6\)

\(=2\left(x^2-\dfrac{3}{2}x+3\right)\)

\(=2\left(x^2-2\cdot x\cdot\dfrac{3}{4}+\dfrac{9}{16}+\dfrac{39}{16}\right)\)

\(=2\left(x-\dfrac{3}{4}\right)^2+\dfrac{39}{8}>=\dfrac{39}{8}>0\forall x\)

11 tháng 8

E=2x2+4x+13

E=2(x2+2x+1)+11

E=2(x+1)2+11

2(x+1)2≥0,∀x

⇒2(x+1)2+11 lớn hơn 0 ∀x

⇒E luôn nhân giá trị dương

F=2x2-3x+6

 2F=4x2-6x+12

2F=(4x2-6x+\(\dfrac{9}{4}\))+\(\dfrac{15}{4}\)

2F=(2x+\(\dfrac{3}{2}\))2+\(\dfrac{15}{4}\)

F=\(\dfrac{\left(2x+\dfrac{3}{2}\right)^2}{2}\)+\(\dfrac{15}{8}\)

\(\dfrac{\left(2x+\dfrac{3}{2}\right)^2}{2}\)≥0,∀x

\(\dfrac{\left(2x+\dfrac{3}{2}\right)^2}{2}\)+\(\dfrac{15}{8}\) lớn hơn 0 ∀x

⇒F luôn nhận giá trị dương

 

a: Xét ΔAEH vuông tại E và ΔAHB vuông tại H có

\(\widehat{EAH}\) chung

Do đó: ΔAEH~ΔAHB

=>\(\dfrac{AE}{AH}=\dfrac{AH}{AB}\)

=>\(AH^2=AE\cdot AB\left(1\right)\)

Xét ΔAFH vuông tại F và ΔAHC vuông tại H có

\(\widehat{FAH}\) chung

Do đó: ΔAFH~ΔAHC

=>\(\dfrac{AF}{AH}=\dfrac{AH}{AC}\)

=>\(AH^2=AF\cdot AC\left(2\right)\)

Từ (1),(2) suy ra \(AE\cdot AB=AF\cdot AC\)

b: Xét tứ giác AEHF có \(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

nên AEHF là hình chữ nhật

=>\(HA^2=HE^2+HF^2\)

Xét ΔEHA vuông tại H và ΔEBH vuông tại E có

\(\widehat{EHA}=\widehat{EBH}\left(=90^0-\widehat{HAE}\right)\)

Do đó: ΔEHA~ΔEBH

=>\(\dfrac{EH}{EB}=\dfrac{EA}{EH}\)

=>\(EH^2=EA\cdot EB\)

Xét ΔFHA vuông tại F và ΔFCH vuông tại F có

\(\widehat{FHA}=\widehat{FCH}\left(=90^0-\widehat{HAC}\right)\)

Do đó: ΔFHA~ΔFCH

=>\(\dfrac{FH}{FC}=\dfrac{FA}{FH}\)

=>\(FH^2=FA\cdot FC\)

\(HA^2=HE^2+HF^2=EA\cdot EB+FA\cdot FC\)

11 tháng 8

Điều kiện: `x > 0`

Trong 1 giờ, cả hai vòi chảy được: 

`1 : 24 = 1/24` (bể) 

Trong 1 giờ, vòi 1 chảy được: 

`1 : x = 1/x` (bể)

Trong 1 giờ, vỏi 2 chảy được: 

`1/24 - 1/x` (bể) 

Do vòi thứ nhất chảy 3h, vòi thứ hai chảy 6h thì được `1/3` bể, ta có phương trình: 

`3 . 1/x + 6 . (1/24 - 1/x) = 1/3 `

`<=> 3/x + 1/4 - 6/x = 1/3`

`<=> -3/x = 1/3 - 1/4`

`<=> -3/x = 1/12`

`<=> x = -36` (Không thỏa mãn) 

Vậy không tồn tại `x `

Trong 1 giờ, vòi 1 chảy được: \(\dfrac{1}{x}\left(bể\right)\)

Trong 1 giờ, hai vòi chảy được: \(\dfrac{1}{24}\left(bể\right)\)

Trong 1 giờ, vòi 2 chảy được: \(\dfrac{1}{24}-\dfrac{1}{x}\left(bể\right)\)

Trong 3 giờ, vòi 1 chảy được: \(\dfrac{3}{x}\left(bể\right)\)

Trong 6 giờ, vòi 2 chảy được: \(6\left(\dfrac{1}{24}-\dfrac{1}{x}\right)=\dfrac{1}{4}-\dfrac{6}{x}\left(bể\right)\)

 

a: ABCD là hình thoi

=>AC\(\perp\)BD tại trung điểm của mỗi đường

=>AC\(\perp\)BD tại I

Xét tứ giác AIBM có

K là trung điểm chung của AB và IM

=>AIBM là hình bình hành

Hình bình hành AIBM có \(\widehat{AIB}=90^0\)

nên AIBM là hình chữ nhật

ΔEHF vuông tại H

=>\(HE^2+HF^2=EF^2\)

=>\(HE=\sqrt{5^2-3^2}=4\left(cm\right)\)

Xét ΔHEG vuông tại H và ΔHFE vuông tại H có

\(\widehat{HEG}=\widehat{HFE}\left(=90^0-\widehat{G}\right)\)

Do đó: ΔHEG~ΔHFE

=>\(\dfrac{HE}{HF}=\dfrac{HG}{HE}\)

=>\(HE^2=HF\cdot HG\)

=>\(HG=\dfrac{4^2}{3}=\dfrac{16}{3}\left(cm\right)\)

ΔEHG vuông tại H

=>\(HE^2+HG^2=EG^2\)

=>\(EG=\sqrt{\left(\dfrac{16}{3}\right)^2+4^2}=\dfrac{8\sqrt{13}}{3}\left(cm\right)\)

NV
11 tháng 8

Với mọi x;y dương ta có:

\(\left(x-y\right)^2\ge0\Leftrightarrow x^2+y^2\ge2xy\) 

\(\Leftrightarrow x^2+y^2+2xy\ge4xy\)

\(\Leftrightarrow\left(x+y\right)^2\ge4xy\) (1)

Đồng thời cũng suy ra: \(x+y\ge2\sqrt{xy}\) (2)

Gọi biểu thức đã cho là P, áp dụng BĐT (1) ta được:

\(P=\dfrac{\left(a+b\right)^2}{4c^2}+\dfrac{\left(b+c\right)^2}{4d^2}+\dfrac{\left(c+d\right)^2}{4a^2}+\dfrac{\left(d+a\right)^2}{4b^2}\)

\(P\ge\dfrac{4ab}{4c^2}+\dfrac{4bc}{4d^2}+\dfrac{4cd}{4a^2}+\dfrac{4da}{4b^2}=\dfrac{ab}{c^2}+\dfrac{bc}{d^2}+\dfrac{cd}{a^2}+\dfrac{da}{b^2}\)

Áp dụng tiếp BĐT (2):

\(P\ge2\sqrt{\dfrac{ab.bc}{c^2d^2}}+2\sqrt{\dfrac{cd.da}{a^2b^2}}\ge2\left(2\sqrt{\sqrt{\dfrac{ab.bc}{c^2d^2}}.\sqrt{\dfrac{cd.da}{a^2b^2}}}\right)=4\)

\(P_{min}=4\) khi \(a=b=c=d\)