2 máy cày làm việc chung thì cày xong 1 cánh đồng trong 12 giờ. Nếu làm riêng thì máy thứ nhất xong sớm hơn máy thứ 2 là 10 giờ. Hỏi mỗi máy làm riêng thì sau bao nhiêu giờ sẽ hoàn thành công việc (giải bằng cách lập phương trình và lập hệ phương trình)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thêm điều kiện x; y; z > 0
B1: Tìm điểm rơi
B2: Dùng cô - si
\(S=3\left(x^2+y^2\right)+z^2=\left(2x^2+\frac{1}{2}z^2\right)+\left(2y^2+\frac{1}{2}z^2\right)+\left(x^2+y^2\right)\)
\(\ge2.\sqrt{x^2z^2}+2.\sqrt{y^2z^2}+2.\sqrt{x^2y^2}\)
\(=2\left(xy+yz+zx\right)=2\)
Dấu "=" xảy ra <=> \(x=y=\frac{1}{\sqrt{5}};z=\frac{2}{\sqrt{5}}\)
giúp mình đi vẽ hộ cái hình
cho đường tròn tâm O bán kính r,điểm A cố định nằm ngoài đường tròn.kẻ 2 tiếp tuyến AM,AN.Đường thẳng D đi qua A cắt đường tròn O tại B,C với AB<AC.Chứng minh 5 điểm A,M,N,O,I thuộc đường tròn
1. PT hoành độ giao điểm:
x2−(2x−m2+9)=0⇔x2−2x+m2−9=0(∗)
Khi m=1
thì pt trên trở thành: x2−2x−8=0
⇔(x−4)(x+2)=0⇒x=4
hoặc x=−2
Khi x=4⇒y=x2=16
. Giao điểm thứ nhất là (4,16)
Khi x=−2⇒y=x2=4
. Giao điểm thứ hai là (−2,4)
2. (P)
và (d) cắt nhau tại 2 điểm phân biệt ⇔(∗)
có 2 nghiệm phân biệt (hai nghiệm ấy chính là giá trị của 2 hoành độ giao điểm)
⇔Δ′=1−(m2−9)>0⇔10>m2(1)
Hai giao điểm nằm về phía của trục tung, nghĩa là 2 hoành độ giao điểm x1,x2
trái dấu. Điều này xảy ra khi x1x2<0⇔m2−9<0(2)
Từ (1);(2)
suy ra m2−9<0⇔−3<m<3
Vì bạn lớp 9 nên mình sẽ làm theo cách lớp 9 :)
Gọi số học sinh trung bình,khá,giỏi lần lượt là x,y,z ( x,y,z > 0 ; x,y,z thuộc N ; học sinh )
Ta nhận thấy trong giả thiết : \(x=28\)(1)
Cứ 7 học sinh trung bình thì có 3 học sinh khá : \(\frac{x}{7}-\frac{y}{3}=0\)(2)
Cứ 4 học sinh khá thì có 1 học sinh giỏi.: \(\frac{y}{4}-z=0\)(3)
Từ 1 ; 2 và 3 ta suy ra được hệ ba phương trình bậc nhất 3 ẩn sau :
\(\hept{\begin{cases}x=28\\\frac{x}{7}-\frac{y}{3}=0\\\frac{y}{4}-z=0\end{cases}}\)\(< =>\hept{\begin{cases}x=28\\\frac{28}{7}-\frac{y}{3}=0\\\frac{y}{4}-z=0\end{cases}}\)
\(< =>\hept{\begin{cases}x=28\\4-\frac{y}{3}=0\\\frac{y}{4}-z=0\end{cases}}\)\(< =>\hept{\begin{cases}x=28\\\frac{12}{3}=\frac{y}{3}< =>y=12\\\frac{y}{4}-z=0\end{cases}}\)
\(< =>\hept{\begin{cases}x=28\\y=12\\\frac{12}{4}-z=0\end{cases}}\)\(< =>\hept{\begin{cases}x=28\\y=12\\z=3\end{cases}}\)(4)
Từ 4 suy ra số học sinh lớp 9b là \(28+12+3=43\)
Vậy số học sinh lớp 9b là 43 học sinh ( tmđk )
Bài 2:b) \(9=\left(\frac{1}{a^3}+1+1\right)+\left(\frac{1}{b^3}+1+1\right)+\left(\frac{1}{c^3}+1+1\right)\)
\(\ge3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\therefore\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le3\)
Ta sẽ chứng minh \(P\le\frac{1}{48}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)
Ai có cách hay?
1/Đặt a=1/x,b=1/y,c=1/z ->x+y+z=1.
2a) \(VT=\frac{\left(\frac{1}{a^3}+\frac{1}{b^3}\right)\left(\frac{1}{a}+\frac{1}{b}\right)}{\frac{1}{a}+\frac{1}{b}}\ge\frac{\left(\frac{1}{a^2}+\frac{1}{b^2}\right)^2}{\frac{1}{a}+\frac{1}{b}}\)
\(=\frac{\left[\frac{\left(a^2+b^2\right)^2}{a^4b^4}\right]}{\frac{a+b}{ab}}=\frac{\left(a^2+b^2\right)^2}{a^3b^3\left(a+b\right)}\ge\frac{\left(a+b\right)^3}{4\left(ab\right)^3}\)
\(\ge\frac{\left(a+b\right)^3}{4\left[\frac{\left(a+b\right)^2}{4}\right]^3}=\frac{16}{\left(a+b\right)^3}\)
Đặt \(a=\frac{x^2}{z},\text{ }b=\frac{y^2}{z}\) thì \(z=\sqrt{x^4+y^4}\) và x, y, z > 0
Ta cần chứng minh: \(z\left(\frac{1}{x^2}+\frac{1}{y^2}\right)-\left(\frac{x}{y}-\frac{y}{x}\right)^2\ge2\sqrt{2}\)
Tương đương: \(\sqrt{x^4+y^4}\left(\frac{1}{x^2}+\frac{1}{y^2}\right)\ge\left(\frac{x}{y}-\frac{y}{x}\right)^2+2\sqrt{2}\)
Sau cùng ta cần chứng minh: \(\frac{2\left(3-2\sqrt{2}\right)\left(x^2-y^2\right)^2}{x^2y^2}\ge0\)
Xong.
Gọi thời gian máy cày thứ nhất một mình làm xong công việc là x ( > 0; giờ )
=> thời gian máy cày thứ hai một mình làm xong công việc là x + 10 ( giờ )
1 giờ máy thứ nhất làm được: \(\frac{1}{x}\) ( công việc )
1 giờ máy thứ 2 làm được : \(\frac{1}{x+10}\) ( công việc )
1 giờ cả hai máy làm được: \(\frac{1}{12}\) ( công việc )
=> \(\frac{1}{x}+\frac{1}{x+10}=\frac{1}{12}\Leftrightarrow x+10+x=\frac{x^2+10x}{12}\)
<=> \(x^2-14x-120=0\Leftrightarrow\orbr{\begin{cases}x=-6\left(loai\right)\\x=20\left(tm\right)\end{cases}}\)
Vậy máy 1 làm riêng trong 20 giờ và máy thứ 2 làm riêng trong 30 giờ thì xong công việc.