thực hiện phép tính:
\(\frac{4}{\sqrt{3}+1}\)-\(\frac{5}{\sqrt{3}-2}\)+\(\frac{6}{\sqrt{3}-3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cay, đánh xong rồi tự nhiên bấm hủy :v
Ta có:\(x+y+z=xyz\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\)
Đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\rightarrow\left(a;b;c\right)\Rightarrow ab+bc+ca=1\)
Khi đó:
\(A=\frac{a^2\left(1+2b\right)}{b}+\frac{b^2\left(1+2c\right)}{c}+\frac{c^2\left(1+2a\right)}{a}\)
\(=\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+2\left(a^2+b^2+c^2\right)\)
\(\ge\frac{\left(a+b+c\right)^2}{a+b+c}+2\cdot\frac{\left(a+b+c\right)^2}{3}\)
\(=a+b+c+\frac{2\left(a+b+c\right)^2}{3}\)
\(\ge\sqrt{3\left(ab+bc+ca\right)}+\frac{6\left(ab+bc+ca\right)}{3}\)
\(=2+\sqrt{3}\)
Đẳng thức xảy ra tại \(x=y=z=\sqrt{3}\)
zZz Cool Kid_new zZz. Sai đề rồi bạn êii !
Nếu bạn đặt như vậy thì
\(A=\frac{y-2}{x^2}+\frac{z-2}{y^2}+\frac{x-2}{z^2}\)
\(=\frac{a^2\left(1-2b\right)}{b}+\frac{b^2\left(1-2c\right)}{c}+\frac{c^2\left(1-2a\right)}{a}\)
\(=\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}-2.\left(a^2+b^2+c^2\right)\)
Uầy cái này là bổ đề huyền thoại của lớp 9 rồi :333333333
BĐT cần CM <=> \(9\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(a+b+c\right)\left(ab+bc+ca\right)\)
<=> \(9\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(a+b\right)\left(b+c\right)\left(c+a\right)+8abc\)
<=> \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
Mà theo CAUCHY 2 số thì \(a+b\ge2\sqrt{ab};b+c\ge2\sqrt{bc};c+a\ge2\sqrt{ca}\)
Nhân lại => \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
=> Ta có điều phải chứng minh.
Áp dụng BĐT AM-GM với 3 số a, b, c ta luôn có:
\(a+b\ge2\sqrt{ab}\), dấu bằng xảy ra khi a = b.
\(b+c\ge2\sqrt{bc}\), dấu bằng xảy ra khi b = c.
\(a+c\ge2\sqrt{ac}\) , dấu bằng xảy ra khi a = c.
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{bc}.2\sqrt{ab}.2\sqrt{ac}=8abc\)
lại có \(\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc=\left(a+b+c\right)\left(ab+bc+ca\right)\le\left(\frac{1}{8}+1\right)\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\le\frac{9}{8}\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\left(đpcm\right)\)
Dấu ''='' xảy ra khi a=b=c
\(A=\frac{\sqrt{x}+1}{2\sqrt{x}+1}\Rightarrow\frac{1}{A}=\frac{2\sqrt{x}+1}{\sqrt{x}+1}=1+\frac{\sqrt{x}}{\sqrt{x}+1}\ge1\Rightarrow A\le1\)
Vậy MAX A=1 khi và chỉ khi x=0
đặt \(\sqrt{2-x}=a;\sqrt{2+x}=b\) \(\left(a+b\ge0\right)\)=> \(2-x=a^2;2+x=b^2\)=> \(a^2+b^2=4\)
=> Ta có hệ phương trình mới sau khi đặt 2 ẩn phụ là a; b
\(\hept{\begin{cases}a^2+b^2=4\\a+b+ab=2\end{cases}}\)<=> \(\hept{\begin{cases}\left(a+b\right)^2=4+2ab\\ab=2-a-b\end{cases}}\)Thay 2ab=4-2a-2b từ pt (2) lên pt (1) ta được:
=> \(\left(a+b\right)^2=4+4-2a-2b\)
<=> \(\left(a+b\right)^2+2\left(a+b\right)=8\)
<=> \(a+b=2\)hoặc \(a+b=-4\)
Do \(a+b\ge0\)=> \(a+b=2\)<=> \(ab=0\)
<=> \(a=0;b=2\)hoặc \(a=2;b=0\)
Trường hợp 1: a=0; b=2
Khi đó \(\sqrt{2-x}=0;\sqrt{2+x}=2\)<=> x=2
Trường hợp 2: a=2; b=0
Khi đó \(\sqrt{2-x}=2;\sqrt{2+x}=0\)và cũng ra x=2
Vậy pt có nghiệm duy nhất là x=2.
ĐK: \(-2\le x\le2\)
Đặt: \(\sqrt{2-x}+\sqrt{2+x}=t\ge0\)
=> \(t^2=4+2\sqrt{4-x^2}\)
=> \(\sqrt{4-x^2}=\frac{t^2-4}{2}\)
Ta có phương trình: \(t+\frac{t^2-4}{2}=2\)
<=? \(t^2+2t+1=9\)
<=> \(\left(t+1\right)^2=9\)
<=> \(\orbr{\begin{cases}t+1=3\\t+1=-3\end{cases}}\Leftrightarrow\orbr{\begin{cases}t=2\\t=-4\left(loai\right)\end{cases}}\)
Với t = 2 ta thay vào:
\(t^2=4+2\sqrt{4-x^2}\)
khi đó có phương trinh:
\(4=4+2\sqrt{4-x^2}\)
<=> \(\sqrt{4-x^2}=0\Leftrightarrow x=\pm2\)( thỏa mãn đk)
Vậy:...
\(xy^2+y^2-x^2+xy-2x+y=0\)
<=> \(y^2\left(x+1\right)+y\left(x+1\right)+1=\left(x+1\right)^2\)
Do x, y thuộc Z => \(y^2\left(x+1\right);y\left(x+1\right);\left(x+1\right)^2\)chia hết cho x+1
=> 1 chia hết cho x+1. Do x thuộc Z => x+1=1 hoặc -1
<=> x=0 hoặc x=-2
=> Thay x=0 hoặc x=-2 vào pt ban đầu và tìm ra y.
ta có \(AM^2=\frac{AB^2+BC^2}{2}-\frac{AC^2}{4}\)( CÔNG THỨC TÍNH ĐƯỜNG TRUNG TUYẾN )
thay \(3,5^2=\frac{4^2+BC^2}{2}-\frac{7^2}{4}\)
\(\Leftrightarrow12.25=\frac{4^2+BC^2}{2}-12,25\)
\(\Leftrightarrow24,5=\frac{4^2+BC^2}{2}\)
\(\Leftrightarrow49=16+BC^2\)
\(\Leftrightarrow33=BC^2\)
\(\Leftrightarrow BC=\sqrt{33}=5.7\left(cm\right)\)
s/p lần đầu làm dạng này
\(\frac{4}{\sqrt{3}+1}-\frac{5}{\sqrt{3}-2}+\frac{6}{\sqrt{3}-3}\)
\(=\frac{4\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}-\frac{5\left(\sqrt{3}+2\right)}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}+\frac{6\left(\sqrt{3}+3\right)}{\left(\sqrt{3}+3\right)\left(\sqrt{3}-3\right)}\)
\(=\frac{4\sqrt{3}-4}{2}-\frac{5\sqrt{3}+10}{-1}+\frac{6\sqrt{3}+18}{3-9}\)
\(=2\sqrt{3}-2+5\sqrt{3}+10-\sqrt{3}-3\)
\(=6\sqrt{3}+5\)