K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2020

\(\left(x+y\right)^2+3x+y+1=z^2\)với x,y,z nguyên dương \(\Rightarrow z^2>\left(x+y\right)^2\)

\(\left(x+y\right)^2+3x+y+1=\left(x+y+2\right)^2-x-3y-3=z^2\)với x,y,z nguyên dương \(\Rightarrow z^2< \left(x+y+2\right)^2\)

Vậy \(z^2\)là số chính phương ở giữa 2 số chính phương khác là \(\left(x+y\right)^2\)và \(\left(x+y+2\right)^2\)

\(\Rightarrow z^2=\left(x+y+1\right)^2\Leftrightarrow\orbr{\begin{cases}x+y=1-z\left(1\right)\\x+y=z-1\left(2\right)\end{cases}}\)

Xét (1): \(x+y=1-z>0\Rightarrow z< 1\Leftrightarrow z=0\)Vì 0 không là số nguyên dương nên (1) vô nghiệm.

Xét (2): \(x+y=z-1\)lúc này pt có vô số nghiệm nguyên dương (x;y;z), x>0, y>0, z>1

16 tháng 9 2020

Bạn hỏi tự vẽ hình nhá

a) Kẻ \(ME\perp AD,MF\perp BC,MG\perp AB,MH\perp CD\)

\(MA^2+MC^2=MB^2+MD^2\)( cùng bằng \(ME^2+MG^2+MF^2+MH^2\))

b) Chứng mih tương tự=>kết quả không đổi. 

Ta có: \(MA^2+MC^2=MB^2+MD^2\)(cùng bằng \(ME^2=AE^2+MF^2+CF^2\))

Vậy khi điểm M nằm ngoài hình chữ nhật ABCD thì đẳng thức ở câu a) vẫn đúng.

16 tháng 9 2020

Ta có \(B=\frac{x^2-4x+5}{2}=\frac{x^2-4x+4}{2}+\frac{1}{2}=\left(x-2\right)^2.\frac{1}{2}+\frac{1}{2}\ge\frac{1}{2}\)

Dấu "=" xảy ra <=> x - 2 = 0

=> x = 2

Vậy Min B = 1/2 <=> x = 2

16 tháng 9 2020

\(B=\frac{x^2-4x+5}{2}=\frac{x^2-4x+4+1}{2}=\frac{\left(x-2\right)^2}{2}+\frac{1}{2}\)

Vì \(\left(x-2\right)^2\ge0\forall x\)\(\Rightarrow\frac{\left(x-2\right)^2}{2}\ge0\forall x\)

\(\Rightarrow\frac{\left(x-2\right)^2}{2}+\frac{1}{2}\ge\frac{1}{2}\forall x\)

Dấu " = " xảy ra \(\Leftrightarrow x-2=0\)\(\Leftrightarrow x=2\)

Vậy \(minB=\frac{1}{2}\)\(\Leftrightarrow x=2\)

16 tháng 9 2020

Ta có: \(x=\frac{2-\sqrt{3}}{2}=\frac{2.\left(2-\sqrt{3}\right)}{4}=\frac{4-2\sqrt{3}}{4}\)

\(=\frac{3-2\sqrt{3}+1}{4}=\frac{\left(\sqrt{3}-1\right)^2}{4}\)

\(\Rightarrow\sqrt{x}=\sqrt{\frac{\left(\sqrt{3}-1\right)^2}{4}}=\frac{\left|\sqrt{3}-1\right|}{2}=\frac{\sqrt{3}-1}{2}\)

16 tháng 9 2020

\(\sqrt{X}\)= -a

Mình mới học lớp 8 lên làm sợ sai ý

16 tháng 9 2020

\(\)<=> \(\left(x-5\right)\left(x+4-\frac{64}{18+2\sqrt{1+16}}\right)=0\)  

      <=>\(x-5=0\) 

        <=>\(x=5\)