\(x^2-x-2\sqrt{1+16x}=2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2020

\(\)<=> \(\left(x-5\right)\left(x+4-\frac{64}{18+2\sqrt{1+16}}\right)=0\)  

      <=>\(x-5=0\) 

        <=>\(x=5\)

2 tháng 5 2020

a) ĐKXĐ : \(7\le x\le9\)

đặt \(A=\sqrt{x-7}+\sqrt{9-x}\)

\(\Rightarrow A^2=2+2\sqrt{\left(x-7\right)\left(9-x\right)}\le2+\left(x-7\right)+\left(9-x\right)=4\)

\(\Rightarrow A\le2\)

Mà \(x^2-16x+66=\left(x-8\right)^2+2\ge2\)

\(\Rightarrow VT=VP=2\)

do đó : \(x-7=9-x\Leftrightarrow x=8\)( t/m )

b) ĐKXĐ : \(x\le1\)

Ta có : \(\sqrt{1-x}+\sqrt{\left(x-1\right)\left(x-2\right)}-\left|x-2\right|\sqrt{\frac{x-1}{x-2}}=3\)

\(\Leftrightarrow\sqrt{1-x}+\sqrt{\left(x-1\right)\left(x-2\right)}-\sqrt{\left(x-1\right)\left(x-2\right)}=3\)

\(\Leftrightarrow\sqrt{1-x}=3\Leftrightarrow x=-8\left(tm\right)\)

\(x^2-x-2\sqrt{1+16x}=2\)

Ta có : \(x^2-x-2\sqrt{1+16x}=2\)

\(x^2-x-2\sqrt{1+16x}-2=0\)

\(\Delta=\left(-1\right)^2-4\left(-2\sqrt{1+16x}-2\right)=8\sqrt{1+16x}+9\ge0\)

Nếu \(\Delta>0\)thì phương trình có nghiệm \(8\sqrt{1+16x}+9>0\)

Phương trình tương đường với : \(x>\frac{17}{1024}\)

Nếu \(\Delta=0\)thì phương trình có nghiệm \(72+\sqrt{1+16x}=0ĐKXĐ:x\ne\frac{17}{1024};0\)

\(\Leftrightarrow-4\left(-2\sqrt{1+16x}-2\right)=-1\)

\(\Leftrightarrow-2\sqrt{1+16x}=\frac{9}{4}\Leftrightarrow x=\frac{17}{1024}\)

8 tháng 7 2020

@Dreamer : Bạn giải thế làm mình bật cười muốn chết á :))

\(ĐKXĐ:x\ge-\frac{1}{16}\)

\(x^2-x-2\sqrt{1+16x}=2\)

\(\Leftrightarrow x^2-x-2-2\left(\sqrt{1+16x}-9\right)-18=0\)

\(\Leftrightarrow x^2-x-20-2\cdot\frac{1+16x-81}{\sqrt{1+16x}+9}=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+4\right)-\frac{16x-80}{\sqrt{1+16x}+9}=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+4\right)-\frac{16\left(x-5\right)}{\sqrt{1+16x}+9}=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+4-\frac{16}{\sqrt{1+16x}+9}\right)=0\)

Mặt khác theo ĐKXĐ:

\(x+4-\frac{16}{\sqrt{1+16x}+9}\ge\frac{-1}{16}+4-\frac{16}{\sqrt{1-1}+9}>0\)

Vậy x=5 là nghiệm của phương trình

15 tháng 8 2017

cách giải hay nè:  =  
 =  
 =  
Đặt  = 
=>  = 
=> = .ta có hệ:
 
Đến Đây thì đơn giản rồi.chứ nân ra thì muốn ói

15 tháng 8 2017

phần sau cậu làm giống cô là đc 

b2

\(\left(\sqrt{2x^2-6x+2}-2x+3\right)\left(-\sqrt{2x^2-6x+2}-3x+4\right)=0\)

14 tháng 8 2017

Dự đoán \(\frac{1}{2}\)là nghiệm của phương trình ( casio :v)

Áp dụng AM-GM:\(2VF=3.\sqrt[3]{4.8x\left(4x^2+3\right)}\le4+8x+4x^2+3=4x^2+8x+7\)

và \(4x^2+8x+7\le8x^4+2x^2+6x+8\)vì nó tương đương \(\left(2x-1\right)^2\left(2x^2+2x+1\right)\ge0\)

Do đó \(VT\ge VF\)

Dấu = xảy ra khi\(x=\frac{1}{2}\)

2 tháng 10 2016

Bài này hơi khó nhưng mình giải đc

25 tháng 10 2019

c) Bài này nghiệm đẹp nên cứ yên tâm bình phương:) Còn em lâu rồi ko đi khủng bố tinh thần người đọc:P

ĐK: \(x\ge-\frac{1}{16}\)

PT \(\Leftrightarrow x^2-x-2+\frac{2\sqrt{1+16x}}{9}\left(\sqrt{1+16x}-9\right)-\frac{2\left(1+16x\right)}{9}=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+\frac{4}{9}\right)+\frac{2\sqrt{1+16x}}{9}\left(\frac{16\left(x-5\right)}{\sqrt{1+16x}+9}\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+\frac{4}{9}+\frac{32\sqrt{1+16x}}{9\left(\sqrt{1+16x}+9\right)}\right)=0\)

Cái ngoặc to luôn dương.

Do đó x = 5

P/s: Em đánh máy lỗi chỗ nào thì nhắn hộ em:D

25 tháng 10 2019

a)ĐK:...

Đặt \(\sqrt{x+5}=a;\sqrt{3-x}=b\ge0\Rightarrow a^2+b^2=8\)

Theo đề bài ta có hệ \(\left\{{}\begin{matrix}a+b-2\left(ab+1\right)=0\\a^2+b^2=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b-2ab-2=0\\\left(a+b\right)^2-2ab-8=0\end{matrix}\right.\)

Lấy pt dưới trừ pt trên thu được \(\left(a+b\right)^2-\left(a+b\right)-6=0\Leftrightarrow\left[{}\begin{matrix}a+b=3\\a+b=-2\left(L\right)\end{matrix}\right.\)

Thay a + b = 3 vào pt đầu ta suy ra \(ab=\frac{1}{2}\)

Theo hệ thức Viet đảo: a, b là hai nghiệm của pt:\(t^2-3t+\frac{1}{2}=0\)

\(\Leftrightarrow t\in\left\{\frac{3+\sqrt{7}}{2};\frac{3-\sqrt{7}}{2}\right\}\).Đến đây xét 2 th:

TH1: \(\left\{{}\begin{matrix}a=\frac{3+\sqrt{7}}{2}\\b=\frac{3-\sqrt{7}}{2}\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}a=\frac{3-\sqrt{7}}{2}\\b=\frac{3+\sqrt{7}}{2}\end{matrix}\right.\) nữa là xong! (em nghĩ vậy thôi chứ ko chắc ở đoạn dùng hệ thức Viet đảo đâu!)

3 tháng 6 2017
  1. TXD :R => \(\sqrt{x^2-8x+16}-x=2\Leftrightarrow\sqrt{\left(x-4\right)^2}-x=2\)\(\Rightarrow|x-4|-x=2\)
  • Nếu \(x\ge4\)phương trình trở thành \(\Leftrightarrow x-4-x=2\Leftrightarrow-4=2\left(Vl\right)\)
  • Nếu \(x< 4\)phương trình trở thành \(\Leftrightarrow4-x-x=2\Leftrightarrow x=1\)
  1. Câu 2 : Đk \(x\ge0\)ta có \(\sqrt{x}\left(3-2\sqrt{9}+\sqrt{16}\right)=5\Leftrightarrow\sqrt{x}\left(3-2.3+4\right)=5\)\(\sqrt{x}=5\Leftrightarrow x=25\left(tm\right)\)