Cho Tam giác ABC vuông tại A. từ A vẽ AH vuông BC. Lấy M thuộc BC sao cho BA = BM. Lấy N thuộc AC sao cho AC = AH.
a.CM gốc BAM = gôc AMB.
b CM AM2=AN2+MN2
c. MN//AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=5x^2+20x+2010\)
\(=5\left(x^2+4x+402\right)\)
\(=5\left(x^2+2.x.2+2^2+398\right)\)
\(=5\left[\left(x+2\right)^2+398\right]\)
VÌ \(\left(x+2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+2\right)^2+398\ge398\forall x\)
\(\Rightarrow C=5\left[\left(x+2\right)^2+398\right]\ge1990\forall x\)
Dấu "=" xảy ra <=> x = - 2
Vậy gtnn của C là 1990 tại x = - 2
1) Giá trị nhỏ nhất của A = 0
2) Giá trị nhỏ nhất của B = 2011
3) Gí trị nhỏ nhất của C = 2010
nếu bạn cần cách giải chi tiết thì nhắn tin gửi cho mk; mk sẽ giải cho
\(\frac{x_1-1}{2010}=...=\frac{x_{2010}-2010}{1}=\frac{x_1+x_2+...+x_{2010}-\left(1+2+...+2010\right)}{2010+2009+...+1}\)
\(=\frac{2\left(1+2+...+2010\right)-\left(1+2+...+2010\right)}{1+2+...+2010}=1\)
Vậy thay vào ta được: \(x_1=x_2=...=x_{2010}=2011\)
\(\frac{x_1-1}{2010}=\frac{x_2-2}{2009}=...=\frac{x_{2010}-2010}{1}=\frac{\left(x_1-1\right)+\left(x_2-2\right)+...+\left(x_{2010}-2010\right)}{1+2+...+2010}\) (TC DTSBN)
\(=\frac{\left(x_1+x_2+...+x_{2010}\right)-\left(1+2+...+2010\right)}{1+2+...+2010}=\frac{2.\left(1+2+...+2010\right)-\left(1+2+...+2010\right)}{1+2+...+2010}=1\)
\(\Rightarrow x_1-1=2010;x_2-1=2009;....;x_{2010}-2010=1\)
=> x1 = x2 = x3 =..... = x2010 = 2011
7101=7.7100=7.(74)25=7.(2401)25
Do 240125 có tận cùng là 1 => 7.240125 có tận cùng là 7
Vậy 7101 có tận cùng là 7