cho a+b+c=0
CMR:a3+b3+c3=a.b.c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,a,A=\frac{356^2-144^2}{256^2-244^2}=\frac{\left(356-144\right)\left(356+144\right)}{\left(256-244\right)\left(256+244\right)}=\frac{212.500}{12.500}\)
\(A=\frac{212}{12}=\frac{53}{3}\)
\(b,B=253^2+94.253+47^2\)
\(B=\left(253+47\right)^2=300^2=90000\)
Bài 2
\(a,x^2-16x=-64\)
\(x^2-16x+64=0\)
\(\left(x-8\right)^2=0\)
\(x=8\)
\(b,\left(x+2\right)^2+4\left(x+2\right)+2=0\)
\(x^2+4x+4+4x+8+2=0\)
\(x^2+8x+14=0\)
\(\sqrt{\Delta}=\sqrt{\left(8^2\right)-\left(4.1.14\right)}=2\sqrt{3}\)
\(x_1=\frac{2\sqrt{3}-8}{2}=\sqrt{3}-4\)
\(x_2=\frac{-2\sqrt{3}-8}{2}=-\sqrt{3}-4\)
Do vai trò của \(a,b\)là như nhau nên giả sử \(a\ge b\).
Ta có nhận xét rằng \(ab\)lớn nhất khi giá trị của \(a\)và \(b\)bằng nhau hoặc \(a-b=1\).
Nếu \(a-b>1\): ta thay tích \(ab\)bởi tích \(\left(a-1\right)\left(b+1\right)\)được
\(\left(a-1\right)\left(b+1\right)-ab=ab+a-b-1-ab=a-b-1>0\)
do đó \(a-b\le1\).
Vì \(a,b\)là số tự nhiên mà \(a+b=2019\)là số lẻ nên \(P\)đặt max tại \(a-b=1\)
\(\Rightarrow\hept{\begin{cases}a=1010\\b=1009\end{cases}}\).
Vậy \(maxP=1010.1009\).
\(ĐKXĐ:x\ne2;x\ne-2;x\ne0\)
\(a,P=\left(\frac{-1}{2-x}-\frac{2x}{4-x^2}+\frac{1}{2+x}\right)\left(\frac{2}{x}-1\right)\)
\(P=\left(\frac{-2-x+2-x-2x}{\left(2-x\right)\left(2+x\right)}\right)\left(\frac{2-x}{x}\right)\)
\(P=\frac{-4x}{\left(2-x\right)\left(2+x\right)}\frac{2-x}{x}\)
\(P=\frac{-4}{2+x}\)
\(b,P=\frac{-4}{2+x}=\frac{1}{2}\)
\(2+x=-8\)
\(x=-10\)
\(c,P=-\frac{4}{2+x}\)
\(< =>-4⋮x+2\)
lập bảng ra thì bạn ra đc \(x=\left\{2;-1;-3;-6\right\}\)
a)\(P=\left(\frac{1}{x-2}-\frac{2x}{4-x^2}+\frac{1}{2+x}\right)\left(\frac{2}{x}-1\right)\)
\(P=\left(\frac{1}{x-2}+\frac{2x}{\left(x+2\right)\left(x-2\right)}+\frac{1}{2+x}\right).\frac{2-x}{x}\)
\(P=\frac{x+2+2x+x-2}{\left(x-2\right)\left(x+2\right)}.\frac{2-x}{x}\)
\(P=\frac{4x}{\left(x-2\right)\left(x+2\right)}.\frac{2-x}{x}\)
\(P=\frac{-4}{x+2}\)
b) Để P=1/2
\(\Rightarrow-\frac{4}{x+2}=\frac{1}{2}\)
\(\Leftrightarrow-8=x+2\)
\(\Leftrightarrow x=-10\)
c) Để P nhận GT nguyên
\(\Rightarrow\left(x+2\right)\inƯ_{\left(-4\right)}\)
\(\Rightarrow\left(x+2\right)\in\left\{-1;1;-2;2;-4;4\right\}\)
\(\Rightarrow x=\left\{-3;-1;-4;0;-6;2\right\}\)
#H
để
\(P=x^2+6x-22=-31\Leftrightarrow x^2+6x+9=0\)
\(\Leftrightarrow\left(x+3\right)^2=0\Leftrightarrow x=-3\)
ta có
\(x^4+2x^3-6x-9=0\)
\(\Leftrightarrow x^4+2x^3+x^2=x^2+6x+9\)
\(\Leftrightarrow\left(x^2+x\right)^2=\left(x+3\right)^2\Leftrightarrow\orbr{\begin{cases}x^2+x=x+3\\x^2+x=-x-3\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2=3\\x^2+2x+3=0\end{cases}}}\)
Nên \(x^2=3\Leftrightarrow x=\pm\sqrt{3}\)
Ta có a + b + c = 0
<=> a + b = - c
<=> (a + b)3 = (-c)3
<=> a3 + b3 + 3ab(a + b) = -c3
<=> a3 + b3 + c3 = -3ab(a +b)
<=> a3 + b3 + c3 = -3ab(-c)
<=> a3 + b3 + c3 = 3abc (đpcm)
bạn đọc đề kĩ đi xyz