tìm y biết :
7 : y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=2+2^2+2^3+...+2^{2017}\)
\(A=2\left(1+2^1+2^2+...+2^{2016}\right)\)
\(A=2.\dfrac{2^{2016+1}-1}{2-1}\)
\(A=2.\left(2^{2017}-1\right)=2^{2018}-2\)
Câu b bạn xem lại đề
Lời giải:
a. $(x.0,25+1999).2000=(53+1999).2000$
$x.0,25.2000+1999.2000=53.2000+1999.2000$
$x.0,25.2000=53.2000$
$x.0,25=53$
$x=53:0,25=212$
b.
$(5457+x:2):7=1075$
$5457+x:2=1075\times 7=7525$
$x:2=7525-5457=2068$
$x=2068\times 2=4136$
c.
$1-(\frac{12}{5}+x-\frac{8}{9}): \frac{16}{9}=0$
$(\frac{12}{5}+x-\frac{8}{9}):\frac{16}{9}=1$
$\frac{12}{5}+x-\frac{8}{9}=1.\frac{16}{9}=\frac{16}{9}$
$\frac{68}{45}+x=\frac{16}{9}$
$x=\frac{16}{9}-\frac{68}{45}=\frac{4}{15}$
Số tổ là Ước của 48 = {1;2;3;4;6;8;12;16;24;48}
Theo đề bài có các cách chia tổ là 4 hoặc 6 tổ
a) \(A=\left\{34;124;128\right\}\)
b) \(B=\left\{315;483\right\}\)
c) \(C=\left\{315\right\}\)
a. \(A=\left\{34;124;128\right\}\)
b. \(B=\left\{315;483;\right\}\)
c. \(C=\left\{315\right\}\)
\(2\cdot3^x=10\cdot3^{12}+7\cdot27^4\)
\(\Rightarrow2\cdot3^x=10\cdot3^{12}+7\cdot3^{12}\)
\(\Rightarrow2\cdot3^x=3^{12}\cdot\left(10+7\right)\)
\(\Rightarrow2\cdot3^x=3^{12}\cdot17\)
Xem lại đề
\(2\times3^x=10\times3^{12}+7\times27^4\)
\(2\times3^x=10\times531441+7\times531441\)
\(2\times3^x=531441\times\left(10+7\right)\)
\(2\times3^x=531441\times17\)
\(2\times3^x=9034497\)
\(3^x=4517248,5\)
\(3^x\sim3^{13,948}\)
\(x\sim13,948\)
Đặt \(ƯCLN\left(5m+1,4m+1\right)=d\) (với \(d\inℕ^∗\))
\(\Rightarrow\left\{{}\begin{matrix}5m+1⋮d\\4m+1⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}4\left(5m+1\right)⋮d\\5\left(4m+1\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}20m+4⋮d\\20m+5⋮d\end{matrix}\right.\)
\(\Rightarrow\left(20m+5\right)-\left(20m+4\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(ƯCLN\left(5m+1,4m+1\right)=1\), suy ra \(5m+1\) và \(4m+1\) là 2 số nguyên tố cùng nhau.
Gọi ƯCLN(5m+1,4m+1) là d \(\left(d\ne0\right)\)
=> \(5m+1⋮d;4m+1⋮d\)
=> \(4\left(5m+1\right)⋮d;5\left(4m+1\right)⋮d\)
=> \(20m+4⋮d;20m+5⋮d\)
=> \(\left(20m+5\right)-\left(20m+4\right)⋮d\)
=> \(1⋮d\)
=> \(d=1\)
Vậy 5m +1 và 4m +1 là hai số nguyên tố cùng nhau
\(A=5+5^2+...+5^{30}\)
\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{29}+5^{30}\right)\)
\(A=\left(5+25\right)+5\cdot\left(5+25\right)+...+5^{28}\cdot\left(5+25\right)\)
\(A=30+5\cdot30+...+5^{28}\cdot30\)
\(A=30\cdot\left(1+5+...+5^{28}\right)\)
Vậy A chia hết cho 30
\(A=5+5^2+....+5^{30}\)
\(A=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{28}+5^{29}+5^{30}\right)\)
\(A=5\cdot\left(1+5+25\right)+5^4\cdot\left(1+5+25\right)+...+5^{28}\cdot\left(1+5+25\right)\)
\(A=5\cdot31+5^4\cdot31+...+5^{28}\cdot31\)
\(A=31\cdot\left(5+5^4+...+5^{28}\right)\)
Vậy A chia hết cho 31
X là ước của 32
\(Ư\left(32\right)=\left\{1;2;4;8;16;32\right\}\)
Mà: \(10\le X\le25\)
\(\Rightarrow X\in\left\{16\right\}\)
Ước của 32 = {1;2;4;8;16;32}
\(\Rightarrow x=16\)
Đề thiếu rồi, em bổ sung thêm nha.
7 chia hết cho y
đề ko thiếu