Cho x + y = 5 và x.y=7
Tính giá trị của biểu thức \(A=x^2+y^2 \)
và \(B= x^4+y^4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1.\)
\(-17-\left(x-3\right)^2\)
Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)
\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)
\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)
Dấu '' = '' xảy ra khi:
\(\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Vậy \(Max=-17\)khi \(x=3\)
\(2.\)
\(A=x\left(x+1\right)+\frac{3}{2}\)
\(A=x^2+x+\frac{3}{2}\)
\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)
(x+y)2 = x2+y2+2xy = 49 <=> x2+y2-2xy+4xy=49 <=>(x-y)2=49-4xy=49-4.12=1 <=> |x-y|=1
Ta có: (a+b+c)^3 = a^3 + b^3 + c^3 + 3(ab+bc+ca) [ Cái này tự cm nhé, nếu k biết pm mình ]
<=> 9^3 = 53 + 3(ab+bc+ca)
<=> 3(ab+bc+ca) = 9^3 - 53
Chúc làm bài tốt nhé !