khai triển hằng đẳng thức
(x+1)^2-y^2(có công thức nha)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}\frac{x+3}{x^2+4x+4}\\\frac{x+1}{3x+6}\end{cases}}MTC:3\left(x+2\right)^2\)
\(\Rightarrow\hept{\begin{cases}\frac{x+3}{x^2+4x+4}=\frac{3\left(x+3\right)}{3\left(x+2\right)^2}=\frac{3x+9}{3\left(x+2\right)^2}\\\frac{x+1}{3x+6}=\frac{\left(x+1\right)\left(x+2\right)}{3\left(x+2\right)^2}=\frac{x^2+3x+2}{3\left(x+2\right)^2}\end{cases}}\)
a) (x+y)3 - x3 - y3
= x3 + 3x2y + 3xy2 + y3 - x3 -y3
= 3x2y+ 3xy2
= 3xy(x+y)
b) 4x2 - y2 + 4x + 1
= (2x)2 + 2. 2x.1 + 12 - y2
= (2x+1)2 - y2
= (2x+1-y)(2x+1+y)
a) (1-5a)^2 = 1- 10a + 25a^2
b) x^2 - 4 = (x-2)(x+2)
c) 1-x^2 = (1-x)(1+x)
d) 4a^2 - 9= (2a - 3)(2a + 3)
\(\frac{3x}{2x+4}=\frac{3x\left(x-2\right)}{2\left(x+2\right)\left(x-2\right)}=\frac{3x^2-6x}{2\left(x+2\right)\left(x-2\right)}=\)
\(\frac{x+3}{x^2-4}=\frac{2\left(x+3\right)}{2\left(x+2\right)\left(x-2\right)}=\frac{2x+6}{2\left(x+2\right)\left(x-2\right)}\)
`(3x)/(2x+4)`
`= (3x (x-2) )/( (2x+4) (x-2) )`
`= (3x^2 - 6x)/(2 (x+2) (x-2) )`
`(x+3)/(x^2 - 4)`
`= (x+3)/(x^2 - 2^2)`
`= (x+3)/( (x-2) (x+2) )`
`= (2 (x+3) )/(2 (x-2) (x+2) )`
`= (2x+ 6)/(2 (x+2) (x-2) )`
\(\left(x-\frac{1}{2}\right)^2=x^2-2\cdot\frac{1}{2}x+\left(\frac{1}{2}\right)^2\)
\(=x^2-x+\frac{1}{4}\)
`1,`
`(3xy -x^2 +y) 2/3 x^2y`
`= 3xy . 2/3x^2y -x^2 . 2/3 x^2y + y . 2/3x^2y`
`= 2x^3y^2 - 2/3 x^4y + 2/3 x^2y^2`
`2,`
`(4x^3 - 5xy + 2x)( (-1)/2xy)`
`= 4x^3 . (-1)/2 xy - 5xy . (-1)/2xy + 2x. (-1)/2 xy`
`= -2x^4y + 5/2 x^2y^2 - x^2y`
= (x+1-y)(x+1+y)
hằng đẳng thức số 3: a^2 - b^2 = (a-b)(a+b)
\(\left(x+1\right)^2-y^2=\left(x+1-y\right)\left(x+1+y\right)\)