Tan^4(x) + Tan^3(x) - 4Tan^2(x) + Tan(x) + 1 = 0
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DP
0


J
0




NH
0

Đặt \(\tan x=t\)
\(\Leftrightarrow t^4+t^3-4t+t+1=0\)(1)
Nhẩm nghiệm có t=1
\(\left(1\right)\Leftrightarrow\left(t-1\right)\left(t^3+2t^2-2t-1\right)=0\)(2)
\(t^3+2t^2-2t-1\) Cũng có 1 nghiệm là 1 \(\Rightarrow t^3+2t^2-2t-1=\left(t-1\right)\left(t^2+3t+1\right)\)
\(\left(2\right)\Leftrightarrow\left(t-1\right)^2\left(t^2+3t+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(t-1\right)^2=0\\t^2+3t+1=0\end{cases}}\)
Giải tìm t => tanx => x Bạn tự làm nốt nhé