Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n + 3 chia hết choi n + 1
n + 1+ 2 chia hết cho n +1
2 chia hế cho n + 1
n + 1 thuộc U(2) = {-2 ; -1 ; 1 ; 2}
n + 1 = -2 =>? n = -3
n + 1= -1 => n = -2
n + 1 = 1 => n = 0
n + 1 = 2 => n = 1
Yễn Nguyễn ơi! Giúp mình với!!:
8-3n chia hết cho n+1.
Yễn Nguyễn có làm được ko?
1)[n-6-n+1]chia hết cho n -1
suy ra -5 chia hết cho n-1
đến đây tự giải nhé
các phần sau tương tự
nhớ bấm đúng cho mình nha
bạn ơi nk chưa hiểu rõ
hay kết bạn rùi giải rõ giùm mk nha
cảm ơn bạn rất nhiều
Ta có : n + 3 = (n + 1) + 2
Do n + 1\(⋮\)n + 1
Để n + 3 \(⋮\)n + 1 thì 2 \(⋮\)n + 1 => n + 1 \(\in\)Ư(2) = {1; -1; 2; - 2}
Lập bảng :
n + 1 | 1 | -1 | 2 | -2 |
n | 0 | -2 | 1 | -3 |
Vậy n \(\in\){0; -2; 1; -3} thì n + 3 \(⋮\)n + 1
b) Ta có : 2n + 7 = 2.(n - 3) + 13
Do n - 3 \(⋮\)n - 3
Để 2n + 7 \(⋮\)n - 3 thì 13 \(⋮\)n - 3 => n - 3 \(\in\)Ư(13) = {1; -1; -13 ; 13}
Lập bảng :
n - 3 | 1 | -1 | 13 | -13 |
n | 4 | 2 | 16 | -10 |
Vậy n \(\in\){4; 2; 16; -10} thì 2n + 7 \(⋮\)n - 3
Bài 1 :
a) \(n+3⋮n+1\)
\(a+1+2⋮n+1\)
\(\Rightarrow2⋮n+1\)
\(\Rightarrow n+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
n+1 | 1 | -1 | 2 | -2 |
n | 0 | -2 | 1 | -3 |
b) c) d) tương tự
Bài 2 :
\(A=5+4^2\cdot\left(1+4\right)+...+4^{58}\cdot\left(1+4\right)\)
\(A=5+4^2\cdot5+...+4^{58}\cdot5\)
\(A=5\cdot\left(1+4^2+...+4^{58}\right)⋮5\)
Còn lại : tương tự
1.=> n+7-(n+2) chia hết cho n+2
=>n+7-n-2 chia hết cho n+2
=>5 chia hết cho n+2
=>n+2 thuộc Ư(5)=1;5
ta có bảng:
n+2 | 1 | 5 |
n | loại | 3 |
Vậy n=3
MÌNH MỚI NGHĨ ĐƯỢC TỚI ĐÂY THÔI XIN LỖI NHÉ
3.3n+15 chia hết cho n+1
=>3n+15-n+1 chia hết cho n+1
=>3n+15-3(n+1) chia hết cho n+1
=>3n+15-3n-3 chia hết cho n+1
=>12 chia hết cho n+1
=>n+1 thuộc Ư(12)=1;2;3;4;6;12
ta có bảng:
n+1 | 1 | 2 | 3 | 4 | 12 |
n | 0 | 1 | 2 | 3 | 11 |
Vậy n thuộc 0;1;2;3;11
a, (2n-5)\(⋮\)(n-1)
(2n-2)-3\(⋮\)(n-1)
2(n-1)-3\(⋮\)(n-1)
Vì (n-1)\(⋮\)(n-1)=>2(n-1)\(⋮\)(n-1)
Buộc 3\(⋮\)(n-1)=>n-1ϵƯ(3)={1;3}
Với n-1=1=>n=2
n-1=3=>n=4
Vậy n \(\in\){2;4}
a,2n+5\(⋮\)n-2
(2n+4)+9\(⋮\)n-2
2(n-2)+9\(⋮\)n-2
Vì (n-2)\(⋮\)(n-2)=>n-2ϵƯ(9)={1;3;9}
Với n-2=1=>n=3
n-2=3=>n=5
n-2=9=>n=11
Vậy nϵ{3;5;11}
Ta có :
n2 + 4 = n + n + 4
= ( n + 5 ) + ( n + 5 ) +4 - 10
= 2( n + 5 ) - 6
Vì \(n+5⋮n+5\)nên \(2\left(n+5\right)⋮n+5\)
Để \(2\left(n+5\right)-6⋮n+5\)thì \(6⋮n+5\)
\(\Rightarrow n+5\inƯ\left(6\right)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
\(\Rightarrow n\in\left\{-4;-6;-3;-7;-2;-8;1;-11\right\}\)
Vậy \(n\in\left\{-4;-6;-3;-7;-2;-8;1;-11\right\}\)