K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9

giải hộ mik bài 4 ạ



thân ai nấy lo đi nhé


ĐKXĐ: x>0

Ta có: \(\frac{\sqrt{x}-1}{x-\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\)

\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)-\left(x-\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\frac{x-1-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\frac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\cdot\left(x-\sqrt{x}+1\right)}\)

Ta có: \(A=\left(x+\frac{1}{\sqrt{x}}\right)\left(\frac{\sqrt{x}-1}{x+\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\right)\)

\(=\frac{x\sqrt{x}+1}{\sqrt{x}}\cdot\frac{\sqrt{x}-2}{x\sqrt{x}+1}=\frac{\sqrt{x}-2}{\sqrt{x}}\)

Để A nguyên thì \(\sqrt{x}-2\)\(\sqrt{x}\)

=>-2⋮\(\sqrt{x}\)

=>\(\sqrt{x}\) ∈{1;2}

=>x∈{1;4}

\(a=\sqrt[3]{7+5\sqrt2}+\sqrt[3]{7-5\sqrt2}\)

\(=\sqrt[3]{2\sqrt2+6+\sqrt2+1}+\sqrt[3]{2\sqrt2-6+\sqrt2-1}\)

\(=\sqrt[3]{\left(\sqrt2\right)^3+3\cdot\left(\sqrt2\right)^2\cdot1+3\cdot\sqrt2\cdot1^2+1^3}+\sqrt[3]{\left(\sqrt2\right)^3-3\cdot\left(\sqrt2\right)^2\cdot1+3\cdot\sqrt2\cdot1^2-1^3}\)

\(=\sqrt[3]{\left(\sqrt2+1\right)^3}+\sqrt[3]{\left(\sqrt2-1\right)^3}=\sqrt2+1+\sqrt2-1=2\sqrt2\)

\(D=2a^4+6a^2-28a+2024\)

\(=2\cdot\left(2\sqrt2\right)^4+6\cdot\left(2\sqrt2\right)^2-28\cdot2\sqrt2+2024=2200-56\sqrt2\)

13 tháng 9

helpppp

Ta có: \(\frac{\sqrt{x}+2}{x-1}-\frac{\sqrt{x}-2}{x-2\sqrt{x}+1}\)

\(=\frac{\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)^2}\)

\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)}\)

\(=\frac{x+\sqrt{x}-2-\left(x-\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)}=\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)}\)

Ta có: \(P=\left(\frac{\sqrt{x}+2}{x-1}-\frac{\sqrt{x}-2}{x-2\sqrt{x}+1}\right):\frac{4x}{\left(x-1\right)^2}\)

\(=\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)}\cdot\frac{\left(x-1\right)^2}{4x}\)

\(=\frac{1}{2\sqrt{x}}\cdot\left(\sqrt{x}-1\right)^2\cdot\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+1}{2\sqrt{x}}\)

a: ĐKXĐ: x>=-4

\(x^2+3x+24=12\sqrt{x+4}\)

=>\(x\left(x+3\right)-12\sqrt{x+4}+24=0\)

=>\(x\left(x+3\right)-12\left(\sqrt{x+4}-2\right)=0\)

=>\(x\left(x+3\right)-12\cdot\frac{x+4-4}{\sqrt{x+4}+2}=0\)

=>\(x\left(x+3\right)-\frac{12x}{\sqrt{x+4}+2}=0\)

=>\(x\left(x+3-\frac{12}{\sqrt{x+4}+2}\right)=0\)

=>\(x\left\lbrack x+\frac{3\sqrt{x+4}+6-12}{\sqrt{x+4}+2}\right\rbrack=0\)

=>\(x\left\lbrack x+\frac{3\sqrt{x+4}-6}{\sqrt{x+4}+2}\right\rbrack=0\)

=>\(x\cdot\left\lbrack x+\frac{3\left(\sqrt{x+4}-2\right)}{\sqrt{x+4}+2}\right\rbrack=0\)

=>\(x\cdot\left\lbrack x+3\cdot\frac{x+4-4}{\left(\sqrt{x+4}+2\right)\left(\sqrt{x+4}+2\right)}\right\rbrack=0\)

=>\(x^2\left(1+\frac{3}{\left(\sqrt{x+4}+2\right)^2}\right)=0\)

=>\(x^2=0\)

=>x=0(nhận)

b:

ĐKXĐ: x>=-5/2

\(x^2+\sqrt{2x+5}=2x+3+\sqrt{x^2+2}\)

=>\(x^2-2x-3=\sqrt{x^2+2}-\sqrt{2x+5}\)

=>\(\left(x-3\right)\left(x+1\right)=\frac{x^2+2-2x-5}{\sqrt{x^2+2}+\sqrt{2x+5}}\)

=>\(\left(x-3\right)\left(x+1\right)\left(1-\frac{1}{\sqrt{x^2+2}+\sqrt{2x+5}}\right)=0\)

=>(x-3)(x+1)=0

=>\(\left[\begin{array}{l}x=3\left(nhận\right)\\ x=-1\left(nhận\right)\end{array}\right.\)

ĐKXĐ: x∉{2;-1;-2}

Ta có: \(\frac{3}{x^2-x-2}+\frac{3}{x^2+3x+2}=\frac{3}{x^2+4}\)

=>\(\frac{1}{x^2-x-2}+\frac{1}{x^2+3x+2}=\frac{1}{x^2+4}\)

=>\(\frac{1}{\left(x-2\right)\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}=\frac{1}{x^2+4}\)

=>\(\frac{x+2+x-2}{\left(x-1\right)\left(x+2\right)\left(x-2\right)}=\frac{1}{x^2+4}\)

=>\(\frac{2x}{\left(x-1\right)\left(x+2\right)\left(x-2\right)}=\frac{1}{x^2+4}\)

=>\(2x\left(x^2+4\right)=\left(x-1\right)\left(x^2-4\right)\)

=>\(2x^3+8x=x^3-4x-x^2+4\)

=>\(x^3+x^2+12x-4=0\)

=>x≃0,32(nhận)

Câu 12: Để hệ vô nghiệm thì \(\frac{m^2}{3}=\frac31<>\frac{m}{1}\)

=>\(\begin{cases}m^2=9\\ m<>3\end{cases}\Rightarrow m=-3\)

Câu 11: x+2y=1

=>x=1-2y=1+1=2

\(\frac12\cdot x_0^2-2\cdot y_0=\frac12\cdot2^2-2\cdot\frac12=2-1=1\)

Câu 10: \(\begin{cases}x+2y=5\\ x-y=-1\end{cases}\Rightarrow\begin{cases}x+2y-x+y=5+1=6\\ x+2y=5\end{cases}\)

=>\(\begin{cases}3y=6\\ x=5-2y\end{cases}\Rightarrow\begin{cases}y=2\\ x=5-2\cdot2=1\end{cases}\)

\(3\cdot x_0^{2020}+2\cdot y_0\)

\(=3\cdot1^{2020}+2\cdot2=3+4=7\)

Câu 9: Để hệ phương trình \(\begin{cases}m^2x+y=3m\\ -4x-y=6\end{cases}\) vô nghiệm thì

\(\frac{m^2}{-4}=\frac{1}{-1}<>\frac{3m}{6}\)

=>\(\begin{cases}m^2=4\\ 3m<>-6\end{cases}\Rightarrow\begin{cases}m\in\left\lbrace2;-2\right\rbrace\\ m<>-2\end{cases}\)

=>m=2

Để hệ phương trình \(\begin{cases}\left(2-a\right)x-y=-2\\ ax-y=6\end{cases}\) vô nghiệm thì \(\frac{2-a}{a}=\frac{-1}{-1}<>-\frac26\)

=>\(\frac{2-a}{a}=1\)

=>2-a=a

=>a=1


Bài 3:

a: ΔOAB cân tại O

mà OH là đường cao

nên OH là phân giác của góc AOB và H là trung điểm của BC

b: OH là phân giác của góc AOB

=>\(\hat{AOH}=\hat{BOH}=\frac12\cdot\hat{AOB}=60^0\)

Xét ΔOHA vuông tại H có cos HOA\(=\frac{OH}{OA}\)

=>\(\frac{OH}{R}=cos60=\frac12\)

=>\(OH=\frac{R}{2}\)

ΔOHA vuông tại H

=>\(HO^2+HA^2=OA^2\)

=>\(HA^2=R^2-\left(\frac{R}{2}\right)^2=R^2-\frac{R^2}{4}=\frac34R^2\)

=>\(HA=\frac{R\sqrt3}{2}\)

H là trung điểm của AB

=>\(AB=2\cdot AH=2\cdot\frac{R\sqrt3}{2}=R\sqrt3\)

Diện tích tam giác OAB là:

\(S_{OAB}=\frac12\cdot OH\cdot AB=\frac12\cdot R\cdot R\sqrt3=\frac{R^2\sqrt3}{2}\)

c: Xét ΔCOA có OC=OA và \(\hat{AOC}=60^0\)

nên ΔCOA đều

=>CA=AC=OC=R

Xét ΔCOB có OC=OB và \(\hat{BOC}=60^0\)

nên ΔBOC đều

=>BO=OC=BC=R

Xét tứ giác OACB có OA=CA=CB=OB

nên OACB là hình thoi

Bài 2:

a: ΔOAB cân tại O

mà OM là đường trung tuyến

nên OM⊥AB tại M
b: ΔOAB vuông tại O

=>\(OA^2+OB^2=AB^2\)

=>\(AB^2=R^2+R^2=2R^2\)

=>\(AB=R\sqrt2\)

ΔOAB vuông tại O có OM là đường trung tuyến

nên \(OM=\frac{AB}{2}=\frac{R\sqrt2}{2}\)

Bài 1:

a: Xét tứ giác BEDC có \(\hat{BEC}=\hat{BDC}=90^0\)

nên BEDC là tứ giác nội tiếp đường tròn đường kính BC

=>B,E,D,C cùng thuộc một đường tròn

b: Xét tứ giác ADHE có \(\hat{ADH}+\hat{AEH}=90^0+90^0=180^0\)

nên ADHE là tứ giác nội tiếp đường tròn đường kính AH

=>A,D,E,H cùng thuộc một đường tròn

c: BEDC là tứ giác nội tiếp đường tròn đường kính BC

=>ED<BC

ADHE nội tiếp đường tròn đường kính AH

=>DE<AH