\(\frac14-2x=5;\frac12x-\frac13=25\%\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

LG
23 tháng 8

\(\frac14-2x=5\)

\(2x=\frac14-5\)

\(2x=\frac{-19}{4}\)

\(x=-\frac{19}{4}:2\)

\(x=\frac{-19}{8}\)

LG
23 tháng 8

\(\frac12x-\frac13=25\%\)

\(\frac12x-\frac13=\frac14\)

\(\frac12x=\frac14+\frac13\)

\(\frac12x=\frac{7}{12}\)

\(x=\frac{7}{12}:\frac12\)

\(x=\frac76\)

23 tháng 7 2018

a) \(x+2x+3x+...+100x=-213\)

\(\Rightarrow x.\left(1+2+3+...+100\right)=-213\)

\(\Rightarrow x.5050=-213\Rightarrow x=\frac{-213}{5050}\)

b) \(\frac{1}{2}x-\frac{1}{3}=\frac{1}{4}-4\frac{1}{6}\)

\(\Rightarrow\frac{1}{2}x-\frac{1}{3}=\frac{1}{4}-\frac{25}{6}\)

\(\Rightarrow\frac{1}{2}x-\frac{1}{3}=\frac{-47}{12}\)

\(\Rightarrow\frac{1}{2}x=\frac{-43}{12}\Rightarrow x=\frac{-43}{6}\)

d) \(\frac{x+1}{3}=\frac{x-2}{4}\Rightarrow4\left(x+1\right)=3\left(x-2\right)\Rightarrow4x+4=3x-6\)

                                                                    \(\Rightarrow4x-3x=-6-4\Rightarrow x=-10\)

c) \(3\left(x-2\right)+2\left(x-1\right)=10\)

\(\Rightarrow3x-6+2x-2=10\)

\(\Rightarrow5x=18\Rightarrow x=\frac{18}{5}\)

23 tháng 7 2018

a) \(x+2x+3x+4x+...+100x=-213\)

\(x.\left(1+2+3+4+...+100\right)=-213\)

\(x.5050=-213\)

\(x=-\frac{213}{5050}\)

b) \(\frac{1}{2}x-\frac{1}{3}=\frac{1}{4}-4\frac{1}{6}\)

\(\frac{1}{2}x-\frac{1}{3}=-\frac{47}{12}\)

\(\frac{1}{2}x=-\frac{43}{12}\)

\(x=\frac{-43}{6}\)

Câu 1:

c: \(\frac19+\frac28+\frac37+\cdots+\frac91\)

\(=\left(\frac19+1\right)+\left(\frac28+1\right)+\cdots+\left(\frac82+1\right)+1\)

\(=\frac{10}{2}+\frac{10}{3}+\cdots+\frac{10}{10}=10\left(\frac12+\frac13+\cdots+\frac{1}{10}\right)\)

Ta có: \(\left(\frac12+\frac13+\frac14+\cdots+\frac{1}{10}\right)\cdot x=\frac19+\frac28+\frac37+\cdots+\frac91\)

=>\(x\left(\frac12+\frac13+\cdots+\frac{1}{10}\right)=10\left(\frac12+\frac13+\cdots+\frac{1}{10}\right)\)

=>x=10

Câu 2:

d: \(\frac{1}{1\cdot2\cdot3\cdot4}+\frac{1}{2\cdot3\cdot4\cdot5}+\cdots+\frac{1}{2021\cdot2022\cdot2023\cdot2024}\)

\(=\frac13\left(\frac{1}{1\cdot2\cdot3}-\frac{1}{2\cdot3\cdot4}+\frac{1}{2\cdot3\cdot4}-\frac{1}{3\cdot4\cdot5}+\cdots+\frac{1}{2021\cdot2022\cdot2023}-\frac{1}{2022\cdot2023\cdot2024}\right)\)

\(=\frac13\left(\frac{1}{1\cdot2\cdot3}-\frac{1}{2022\cdot2023\cdot2024}\right)\)

10 tháng 8

mik sẽ tick cho 1 người làm nhanh và đúng nhất

10 tháng 8

Ta có:

\(\left(\right. a - \frac{1}{3} \left.\right) \left(\right. b + \frac{1}{2} \left.\right) \left(\right. c - 3 \left.\right) = 0\) (1)

Và: \(a + 1 = b + 2 = c + 3\)

\(\Rightarrow a = b + 2 - 1 = b + 1\)

Thay vào (1) ta có:
\(\left(\right. b + 1 - \frac{1}{3} \left.\right) \left(\right. b + \frac{1}{2} \left.\right) \left(\right. c - 3 \left.\right) = 0\)

\(\Rightarrow \left(\right. b + \frac{2}{3} \left.\right) \left(\right. b + \frac{1}{2} \left.\right) \left(\right. c - 3 \left.\right) = 0\) (2)

Mà: \(b + 2 = c + 3\)

\(\Rightarrow c = b + 2 - 3 = b - 1\) 

Thay vào (2) ta có:
\(\left(\right. b + \frac{2}{3} \left.\right) \left(\right. b + \frac{1}{2} \left.\right) \left(\right. b - 1 - 3 \left.\right) = 0\)

\(\Rightarrow \left(\right. b + \frac{2}{3} \left.\right) \left(\right. b + \frac{1}{2} \left.\right) \left(\right. b - 4 \left.\right) = 0\)

\(\Rightarrow \left[\right. b = - \frac{2}{3} \\ b = - \frac{1}{2} \\ b = 4\)

TH1 khi b=\(- \frac{2}{3}\)

\(\Rightarrow a = b + 1 = - \frac{2}{3} + 1 = \frac{1}{3}\)

\(\Rightarrow c = b - 1 = - \frac{2}{3} - 1 = - \frac{5}{3}\)

TH2 khi \(b = - \frac{1}{2}\)

\(\Rightarrow a = b + 1 = - \frac{1}{2} + 1 = \frac{1}{2}\)

\(\Rightarrow c = b - 1 = - \frac{1}{2} - 1 = - \frac{3}{2}\)

TH3 khi \(b = 4\)

\(\Rightarrow a = b + 1 = 4 + 1 = 5\)

\(\Rightarrow c = b - 1 = 4 - 1 = 3\)

sai mình xin lỗi

2 tháng 10 2017

câu E

\(\left\{{}\begin{matrix}x\ne\dfrac{5}{2}\\\left(2x-5\right)\left(5-2x\right)=-\left(\dfrac{3}{2}\right)^4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{5}{2}\\\left|2x-5\right|=\left(\dfrac{3}{2}\right)^2\end{matrix}\right.\)

\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x< \dfrac{5}{2}\\2x-5=-\left(\dfrac{3}{2}\right)^2\Rightarrow x=\dfrac{11}{8}< \dfrac{5}{2}\left(n\right)\end{matrix}\right.\\\left\{{}\begin{matrix}x>\dfrac{5}{2}\\2x-5=\left(\dfrac{3}{2}\right)^2\Rightarrow x=\dfrac{29}{8}>\dfrac{5}{2}\left(n\right)\end{matrix}\right.\end{matrix}\right.\)

câu F (bạn cho vào lớp 7.2=lớp 14 nhé. )

Bài 1: Tìm x, biết:a) \(\vert\frac32x+\frac12\vert=\vert4x-1\vert\) b) \(\vert\frac75x+\frac12\vert=\vert\frac43x-\frac14\) \(\vert\) c) \(\vert\frac54x-\frac72\vert-\vert\frac58x+\frac35\vert=0\) \(\)d) \(\vert\frac78x+\frac56\vert-\vert\frac12x+5\vert=0\) \(\) Bài 2: Tìm x, y thỏa mãn:a) \(\) \(\vert5-\frac23x\vert+\vert\frac23y-4\vert=0\) b) \(\vert\frac23-\frac12+\frac34x\vert+\vert1,5-\frac34-\frac32y\vert=0\) c) \(\vert x-2020\vert+\vert y-2021\vert=0\) d) \(\vert...
Đọc tiếp

Bài 1: Tìm x, biết:

a) \(\vert\frac32x+\frac12\vert=\vert4x-1\vert\)

b) \(\vert\frac75x+\frac12\vert=\vert\frac43x-\frac14\) \(\vert\)

c) \(\vert\frac54x-\frac72\vert-\vert\frac58x+\frac35\vert=0\) \(\)

d) \(\vert\frac78x+\frac56\vert-\vert\frac12x+5\vert=0\) \(\)

Bài 2: Tìm x, y thỏa mãn:

a) \(\) \(\vert5-\frac23x\vert+\vert\frac23y-4\vert=0\)

b) \(\vert\frac23-\frac12+\frac34x\vert+\vert1,5-\frac34-\frac32y\vert=0\)

c) \(\vert x-2020\vert+\vert y-2021\vert=0\)

d) \(\vert x-y\vert+\vert y+\frac{21}{10}\vert=0\)

Bài 3: Tìm x, biết:

a) \(\vert x+\frac{1}{1*2}\vert+\vert x+\frac{1}{2*3}\vert+\vert x+\frac{1}{3*4}\vert+\ldots+\vert x+\frac{1}{2019*2020}\vert=2020x\)

b) \(\vert x+\frac{1}{1*3}\vert+\vert x+\frac{1}{3*5}\vert+\vert x+\frac{1}{5*7}\vert+\ldots+\vert x+\frac{1}{197*199}\vert=100x\)

c) \(\vert x+\frac12\vert+\vert x+\frac16\vert+\vert x+\frac{1}{12}\vert+\vert x+\frac{1}{20}\vert+\ldots+\vert x+\frac{1}{110}\vert=11x\)

Giúp mình với!! \(\)


2

Bài 3:

a: \(\left|x+\frac{1}{1\cdot2}\right|+\left|x+\frac{1}{2\cdot3}\right|+\cdots\left|x+\frac{1}{2019\cdot2020}\right|=2020x\) (1)

=>2020x>=0

=>x>=0

Phương trình (1) sẽ trở thành:

\(x+\frac{1}{1\cdot2}+x+\frac{1}{2\cdot3}+\cdots+x+\frac{1}{2019\cdot2020}=2020x\)

=>\(2020x=2019x+\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\cdots+\frac{1}{2019\cdot2020}\right)\)

=>\(x=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\cdots+\frac{1}{2019\cdot2020}\)

=>\(x=1-\frac12+\frac12-\frac13+\cdots+\frac{1}{2019}-\frac{1}{2020}\)

=>\(x=1-\frac{1}{2020}=\frac{2019}{2020}\)

b: \(\left|x+\frac{1}{1\cdot3}\right|+\left|x+\frac{1}{3\cdot5}\right|+\cdots+\left|x+\frac{1}{197\cdot199}\right|=100x\) (2)

=>100x>=0

=>x>=0

(2) sẽ trở thành: \(x+\frac{1}{1\cdot3}+x+\frac{1}{3\cdot5}+\cdots+x+\frac{1}{197\cdot199}=100x\)

=>\(100x=99x+\frac12\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\cdots+\frac{2}{197\cdot199}\right)\)

=>\(x=\frac12\left(1-\frac13+\frac13-\frac15+\cdots+\frac{1}{197}-\frac{1}{199}\right)=\frac12\left(1-\frac{1}{199}\right)\)

=>\(x=\frac12\cdot\frac{198}{199}=\frac{99}{199}\)

c: \(\left|x+\frac12\right|+\left|x+\frac16\right|+\left|x+\frac{1}{12}\right|+\cdots+\left|x+\frac{1}{110}\right|=11x\left(3\right)\)

=>11x>=0

=>x>=0

(3) sẽ trở thành:

\(11x=x+\frac12+x+\frac16+\ldots+x+\frac{1}{110}\)

=>\(11x=10x+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\cdots+\frac{1}{10\cdot11}\)

=>\(x=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\cdots+\frac{1}{10\cdot11}\)

=>\(x=1-\frac12+\frac12-\frac13+\cdots+\frac{1}{10}-\frac{1}{11}=1-\frac{1}{11}=\frac{10}{11}\) (nhận)

Bài 2:

a: \(\left|5-\frac23x\right|\ge0\forall x;\left|\frac23y-4\right|\ge0\forall y\)

Do đó: \(\left|5-\frac23x\right|+\left|\frac23y-4\right|\ge0\forall x,y\)

Dấu '=' xảy ra khi \(\begin{cases}5-\frac23x=0\\ \frac23y-4=0\end{cases}\Rightarrow\begin{cases}\frac23x=5\\ \frac23y=4\end{cases}\Rightarrow\begin{cases}x=5:\frac23=\frac{15}{2}\\ y=4:\frac23=6\end{cases}\)

b: \(\left|\frac23-\frac12+\frac34x\right|=\left|\frac34x+\frac16\right|\ge0\forall x\)

\(\left|1,5-\frac34-\frac32y\right|=\left|\frac34-\frac32y\right|\ge0\forall y\)

Do đó: \(\left|\frac34x+\frac16\right|+\left|\frac34-\frac32y\right|\ge0\forall x,y\)

Dấu '=' xảy ra khi \(\begin{cases}\frac34x+\frac16=0\\ \frac34-\frac32y=0\end{cases}\Rightarrow\begin{cases}\frac34x=-\frac16\\ \frac32y=\frac34\end{cases}\Rightarrow\begin{cases}x=-\frac16:\frac34=-\frac16\cdot\frac43=-\frac{4}{18}=-\frac29\\ y=\frac34:\frac32=\frac24=\frac12\end{cases}\)

c: \(\left|x-2020\right|\ge0\forall x;\left|y-2021\right|\ge0\forall y\)

Do đó: \(\left|x-2020\right|+\left|y-2021\right|\ge0\forall x,y\)

Dấu '=' xảy ra khi \(\begin{cases}x-2020=0\\ y-2021=0\end{cases}\Rightarrow\begin{cases}x=2020\\ y=2021\end{cases}\)

d: \(\left|x-y\right|\ge0\forall x,y\)

\(\left|y+\frac{21}{10}\right|\ge0\forall y\)

Do đó: \(\left|x-y\right|+\left|y+\frac{21}{10}\right|\ge0\forall x,y\)

Dấu '=' xảy ra khi \(\begin{cases}x-y=0\\ y+\frac{21}{10}=0\end{cases}\Rightarrow x=y=-\frac{21}{10}\)

Bài 1:

a: \(\left|\frac32x+\frac12\right|=\left|4x-1\right|\)

=>\(\left[\begin{array}{l}4x-1=\frac32x+\frac12\\ 4x-1=-\frac32x-\frac12\end{array}\right.\Rightarrow\left[\begin{array}{l}4x-\frac32x=\frac12+1\\ 4x+\frac32x=-\frac12+1\end{array}\right.\)

=>\(\left[\begin{array}{l}\frac52x=\frac32\\ \frac{11}{2}x=\frac12\end{array}\right.\Rightarrow\left[\begin{array}{l}x=\frac32:\frac52=\frac35\\ x=\frac12:\frac{11}{2}=\frac{1}{11}\end{array}\right.\)

b: \(\left|\frac75x+\frac12\right|=\left|\frac43x-\frac14\right|\)

=>\(\left[\begin{array}{l}\frac75x+\frac12=\frac43x-\frac14\\ \frac75x+\frac12=\frac14-\frac43x\end{array}\right.\Rightarrow\left[\begin{array}{l}\frac75x-\frac43x=-\frac14-\frac12\\ \frac75x+\frac43x=\frac14-\frac12\end{array}\right.\)

=>\(\left[\begin{array}{l}\frac{1}{15}x=-\frac34\\ \frac{41}{15}x=-\frac14\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-\frac34:\frac{1}{15}=-\frac34\cdot15=-\frac{45}{4}\\ x=-\frac14:\frac{41}{15}=-\frac14\cdot\frac{15}{41}=-\frac{15}{164}\end{array}\right.\)

c: \(\left|\frac54x-\frac72\right|-\left|\frac58x+\frac35\right|=0\)

=>\(\left|\frac54x-\frac72\right|=\left|\frac58x+\frac35\right|\)

=>\(\left[\begin{array}{l}\frac54x-\frac72=\frac58x+\frac35\\ \frac54x-\frac72=-\frac58x-\frac35\end{array}\right.\Rightarrow\left[\begin{array}{l}\frac54x-\frac58x=\frac35+\frac72\\ \frac54x+\frac58x=-\frac35+\frac72\end{array}\right.\)

=>\(\left[\begin{array}{l}\frac58x=\frac{41}{10}\\ \frac{15}{8}x=\frac{29}{10}\end{array}\right.\Rightarrow\left[\begin{array}{l}x=\frac{41}{10}:\frac58=\frac{41}{10}\cdot\frac85=\frac{164}{25}\\ x=\frac{29}{10}:\frac{15}{8}=\frac{29}{10}\cdot\frac{8}{15}=\frac{116}{75}\end{array}\right.\)

d: \(\left|\frac78x+\frac56\right|-\left|\frac12x+5\right|=0\)

=>\(\left|\frac78x+\frac56\right|=\left|\frac12x+5\right|\)

=>\(\left[\begin{array}{l}\frac78x+\frac56=\frac12x+5\\ \frac78x+\frac56=-\frac12x-5\end{array}\right.\Rightarrow\left[\begin{array}{l}\frac78x-\frac12x=5-\frac56\\ \frac78x+\frac12x=-5-\frac56\end{array}\right.\)

=>\(\left[\begin{array}{l}\frac38x=\frac{25}{6}\\ \frac{11}{8}x=-\frac{35}{6}\end{array}\right.\Rightarrow\left[\begin{array}{l}x=\frac{25}{6}:\frac38=\frac{25}{6}\cdot\frac83=\frac{200}{18}=\frac{100}{9}\\ x=-\frac{35}{6}:\frac{11}{8}=-\frac{35}{6}\cdot\frac{8}{11}=-\frac{140}{33}\end{array}\right.\)

lI dau la lI

14 tháng 7 2019

\(a,\frac{2x}{3}=\frac{2y}{4}=\frac{4z}{5}\)và x + y + z = 49

Ta có : \(\frac{2x}{3}=\frac{2y}{4}=\frac{4z}{5}=\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{2}}=\frac{z}{\frac{5}{4}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{2}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{2}+\frac{5}{4}}=\frac{49}{\frac{19}{4}}=49\cdot\frac{4}{19}=\frac{196}{19}\)

Vậy : \(\hept{\begin{cases}\frac{x}{\frac{3}{2}}=\frac{196}{19}\\\frac{y}{\frac{4}{2}}=\frac{196}{19}\\\frac{z}{\frac{5}{4}}=\frac{169}{14}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{294}{19}\\y=\frac{392}{19}\\z=\frac{245}{19}\end{cases}}\)

14 tháng 7 2019

\(b,\frac{x}{y}=\frac{3}{4};\frac{y}{z}=\frac{5}{7}\)và 2x + 3y - z = 186

Ta có : \(\frac{x}{y}=\frac{3}{4};\frac{y}{z}=\frac{5}{7}\Leftrightarrow\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)

\(\Leftrightarrow\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\)

\(\Leftrightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

\(\Leftrightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3\)

Vậy : \(\hept{\begin{cases}\frac{x}{15}=3\\\frac{y}{20}=3\\\frac{z}{28}=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=45\\y=60\\z=84\end{cases}}\)

27 tháng 9 2019

a, \(\left|2x-3\right|=\left|3x-7\right|\)

\(\Rightarrow\orbr{\begin{cases}2x-3=3x-7\\2x-3=7-3x\end{cases}\Rightarrow}\orbr{\begin{cases}-x=-4\\5x=10\end{cases}\Rightarrow}\orbr{\begin{cases}x=2\\x=2\end{cases}\Rightarrow}x=2\)

b, \(\left|7x-1\right|-\left|2x-5\right|=0\)

\(\left|7x-1\right|=\left|2x-5\right|\)

\(\Rightarrow\orbr{\begin{cases}7x-1=2x-5\\7x-1=5-2x\end{cases}\Rightarrow}\orbr{\begin{cases}5x=-4\\9x=6\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{-4}{5}\\x=\frac{2}{3}\end{cases}}\)

c, \(\left|3x-1\right|+\left|4+3x\right|=0\)

Vì \(\left|3x-1\right|\ge0\)\(\left|4+3x\right|\ge0\)

\(\Rightarrow\left|3x-1\right|+\left|4+3x\right|\ge0\)

Dấu " = " xảy ra <=> \(\hept{\begin{cases}3x-1=0\\4+3x=0\end{cases}\Rightarrow}\hept{\begin{cases}3x=1\\3x=-4\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{1}{3}\\x=\frac{-4}{3}\end{cases}}\)(loại)

d, 2x + 1 = 25 => 2x = 24 => x = 12

đề là thế này? 

(2x + 1)2 = 25

\(\Rightarrow\orbr{\begin{cases}2x+1=5\\2x+1=-5\end{cases}\Rightarrow}\orbr{\begin{cases}2x=4\\2x=-6\end{cases}\Rightarrow}\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)