
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) \(x+2x+3x+...+100x=-213\)
\(\Rightarrow x.\left(1+2+3+...+100\right)=-213\)
\(\Rightarrow x.5050=-213\Rightarrow x=\frac{-213}{5050}\)
b) \(\frac{1}{2}x-\frac{1}{3}=\frac{1}{4}-4\frac{1}{6}\)
\(\Rightarrow\frac{1}{2}x-\frac{1}{3}=\frac{1}{4}-\frac{25}{6}\)
\(\Rightarrow\frac{1}{2}x-\frac{1}{3}=\frac{-47}{12}\)
\(\Rightarrow\frac{1}{2}x=\frac{-43}{12}\Rightarrow x=\frac{-43}{6}\)
d) \(\frac{x+1}{3}=\frac{x-2}{4}\Rightarrow4\left(x+1\right)=3\left(x-2\right)\Rightarrow4x+4=3x-6\)
\(\Rightarrow4x-3x=-6-4\Rightarrow x=-10\)
c) \(3\left(x-2\right)+2\left(x-1\right)=10\)
\(\Rightarrow3x-6+2x-2=10\)
\(\Rightarrow5x=18\Rightarrow x=\frac{18}{5}\)
a) \(x+2x+3x+4x+...+100x=-213\)
\(x.\left(1+2+3+4+...+100\right)=-213\)
\(x.5050=-213\)
\(x=-\frac{213}{5050}\)
b) \(\frac{1}{2}x-\frac{1}{3}=\frac{1}{4}-4\frac{1}{6}\)
\(\frac{1}{2}x-\frac{1}{3}=-\frac{47}{12}\)
\(\frac{1}{2}x=-\frac{43}{12}\)
\(x=\frac{-43}{6}\)

Câu 1:
c: \(\frac19+\frac28+\frac37+\cdots+\frac91\)
\(=\left(\frac19+1\right)+\left(\frac28+1\right)+\cdots+\left(\frac82+1\right)+1\)
\(=\frac{10}{2}+\frac{10}{3}+\cdots+\frac{10}{10}=10\left(\frac12+\frac13+\cdots+\frac{1}{10}\right)\)
Ta có: \(\left(\frac12+\frac13+\frac14+\cdots+\frac{1}{10}\right)\cdot x=\frac19+\frac28+\frac37+\cdots+\frac91\)
=>\(x\left(\frac12+\frac13+\cdots+\frac{1}{10}\right)=10\left(\frac12+\frac13+\cdots+\frac{1}{10}\right)\)
=>x=10
Câu 2:
d: \(\frac{1}{1\cdot2\cdot3\cdot4}+\frac{1}{2\cdot3\cdot4\cdot5}+\cdots+\frac{1}{2021\cdot2022\cdot2023\cdot2024}\)
\(=\frac13\left(\frac{1}{1\cdot2\cdot3}-\frac{1}{2\cdot3\cdot4}+\frac{1}{2\cdot3\cdot4}-\frac{1}{3\cdot4\cdot5}+\cdots+\frac{1}{2021\cdot2022\cdot2023}-\frac{1}{2022\cdot2023\cdot2024}\right)\)
\(=\frac13\left(\frac{1}{1\cdot2\cdot3}-\frac{1}{2022\cdot2023\cdot2024}\right)\)

Ta có:
\(\left(\right. a - \frac{1}{3} \left.\right) \left(\right. b + \frac{1}{2} \left.\right) \left(\right. c - 3 \left.\right) = 0\) (1)
Và: \(a + 1 = b + 2 = c + 3\)
\(\Rightarrow a = b + 2 - 1 = b + 1\)
Thay vào (1) ta có:
\(\left(\right. b + 1 - \frac{1}{3} \left.\right) \left(\right. b + \frac{1}{2} \left.\right) \left(\right. c - 3 \left.\right) = 0\)
\(\Rightarrow \left(\right. b + \frac{2}{3} \left.\right) \left(\right. b + \frac{1}{2} \left.\right) \left(\right. c - 3 \left.\right) = 0\) (2)
Mà: \(b + 2 = c + 3\)
\(\Rightarrow c = b + 2 - 3 = b - 1\)
Thay vào (2) ta có:
\(\left(\right. b + \frac{2}{3} \left.\right) \left(\right. b + \frac{1}{2} \left.\right) \left(\right. b - 1 - 3 \left.\right) = 0\)
\(\Rightarrow \left(\right. b + \frac{2}{3} \left.\right) \left(\right. b + \frac{1}{2} \left.\right) \left(\right. b - 4 \left.\right) = 0\)
\(\Rightarrow \left[\right. b = - \frac{2}{3} \\ b = - \frac{1}{2} \\ b = 4\)
TH1 khi b=\(- \frac{2}{3}\)
\(\Rightarrow a = b + 1 = - \frac{2}{3} + 1 = \frac{1}{3}\)
\(\Rightarrow c = b - 1 = - \frac{2}{3} - 1 = - \frac{5}{3}\)
TH2 khi \(b = - \frac{1}{2}\)
\(\Rightarrow a = b + 1 = - \frac{1}{2} + 1 = \frac{1}{2}\)
\(\Rightarrow c = b - 1 = - \frac{1}{2} - 1 = - \frac{3}{2}\)
TH3 khi \(b = 4\)
\(\Rightarrow a = b + 1 = 4 + 1 = 5\)
\(\Rightarrow c = b - 1 = 4 - 1 = 3\)
sai mình xin lỗi

câu E
\(\left\{{}\begin{matrix}x\ne\dfrac{5}{2}\\\left(2x-5\right)\left(5-2x\right)=-\left(\dfrac{3}{2}\right)^4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{5}{2}\\\left|2x-5\right|=\left(\dfrac{3}{2}\right)^2\end{matrix}\right.\)
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x< \dfrac{5}{2}\\2x-5=-\left(\dfrac{3}{2}\right)^2\Rightarrow x=\dfrac{11}{8}< \dfrac{5}{2}\left(n\right)\end{matrix}\right.\\\left\{{}\begin{matrix}x>\dfrac{5}{2}\\2x-5=\left(\dfrac{3}{2}\right)^2\Rightarrow x=\dfrac{29}{8}>\dfrac{5}{2}\left(n\right)\end{matrix}\right.\end{matrix}\right.\)
câu F (bạn cho vào lớp 7.2=lớp 14 nhé. )

Bài 3:
a: \(\left|x+\frac{1}{1\cdot2}\right|+\left|x+\frac{1}{2\cdot3}\right|+\cdots\left|x+\frac{1}{2019\cdot2020}\right|=2020x\) (1)
=>2020x>=0
=>x>=0
Phương trình (1) sẽ trở thành:
\(x+\frac{1}{1\cdot2}+x+\frac{1}{2\cdot3}+\cdots+x+\frac{1}{2019\cdot2020}=2020x\)
=>\(2020x=2019x+\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\cdots+\frac{1}{2019\cdot2020}\right)\)
=>\(x=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\cdots+\frac{1}{2019\cdot2020}\)
=>\(x=1-\frac12+\frac12-\frac13+\cdots+\frac{1}{2019}-\frac{1}{2020}\)
=>\(x=1-\frac{1}{2020}=\frac{2019}{2020}\)
b: \(\left|x+\frac{1}{1\cdot3}\right|+\left|x+\frac{1}{3\cdot5}\right|+\cdots+\left|x+\frac{1}{197\cdot199}\right|=100x\) (2)
=>100x>=0
=>x>=0
(2) sẽ trở thành: \(x+\frac{1}{1\cdot3}+x+\frac{1}{3\cdot5}+\cdots+x+\frac{1}{197\cdot199}=100x\)
=>\(100x=99x+\frac12\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\cdots+\frac{2}{197\cdot199}\right)\)
=>\(x=\frac12\left(1-\frac13+\frac13-\frac15+\cdots+\frac{1}{197}-\frac{1}{199}\right)=\frac12\left(1-\frac{1}{199}\right)\)
=>\(x=\frac12\cdot\frac{198}{199}=\frac{99}{199}\)
c: \(\left|x+\frac12\right|+\left|x+\frac16\right|+\left|x+\frac{1}{12}\right|+\cdots+\left|x+\frac{1}{110}\right|=11x\left(3\right)\)
=>11x>=0
=>x>=0
(3) sẽ trở thành:
\(11x=x+\frac12+x+\frac16+\ldots+x+\frac{1}{110}\)
=>\(11x=10x+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\cdots+\frac{1}{10\cdot11}\)
=>\(x=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\cdots+\frac{1}{10\cdot11}\)
=>\(x=1-\frac12+\frac12-\frac13+\cdots+\frac{1}{10}-\frac{1}{11}=1-\frac{1}{11}=\frac{10}{11}\) (nhận)
Bài 2:
a: \(\left|5-\frac23x\right|\ge0\forall x;\left|\frac23y-4\right|\ge0\forall y\)
Do đó: \(\left|5-\frac23x\right|+\left|\frac23y-4\right|\ge0\forall x,y\)
Dấu '=' xảy ra khi \(\begin{cases}5-\frac23x=0\\ \frac23y-4=0\end{cases}\Rightarrow\begin{cases}\frac23x=5\\ \frac23y=4\end{cases}\Rightarrow\begin{cases}x=5:\frac23=\frac{15}{2}\\ y=4:\frac23=6\end{cases}\)
b: \(\left|\frac23-\frac12+\frac34x\right|=\left|\frac34x+\frac16\right|\ge0\forall x\)
\(\left|1,5-\frac34-\frac32y\right|=\left|\frac34-\frac32y\right|\ge0\forall y\)
Do đó: \(\left|\frac34x+\frac16\right|+\left|\frac34-\frac32y\right|\ge0\forall x,y\)
Dấu '=' xảy ra khi \(\begin{cases}\frac34x+\frac16=0\\ \frac34-\frac32y=0\end{cases}\Rightarrow\begin{cases}\frac34x=-\frac16\\ \frac32y=\frac34\end{cases}\Rightarrow\begin{cases}x=-\frac16:\frac34=-\frac16\cdot\frac43=-\frac{4}{18}=-\frac29\\ y=\frac34:\frac32=\frac24=\frac12\end{cases}\)
c: \(\left|x-2020\right|\ge0\forall x;\left|y-2021\right|\ge0\forall y\)
Do đó: \(\left|x-2020\right|+\left|y-2021\right|\ge0\forall x,y\)
Dấu '=' xảy ra khi \(\begin{cases}x-2020=0\\ y-2021=0\end{cases}\Rightarrow\begin{cases}x=2020\\ y=2021\end{cases}\)
d: \(\left|x-y\right|\ge0\forall x,y\)
\(\left|y+\frac{21}{10}\right|\ge0\forall y\)
Do đó: \(\left|x-y\right|+\left|y+\frac{21}{10}\right|\ge0\forall x,y\)
Dấu '=' xảy ra khi \(\begin{cases}x-y=0\\ y+\frac{21}{10}=0\end{cases}\Rightarrow x=y=-\frac{21}{10}\)
Bài 1:
a: \(\left|\frac32x+\frac12\right|=\left|4x-1\right|\)
=>\(\left[\begin{array}{l}4x-1=\frac32x+\frac12\\ 4x-1=-\frac32x-\frac12\end{array}\right.\Rightarrow\left[\begin{array}{l}4x-\frac32x=\frac12+1\\ 4x+\frac32x=-\frac12+1\end{array}\right.\)
=>\(\left[\begin{array}{l}\frac52x=\frac32\\ \frac{11}{2}x=\frac12\end{array}\right.\Rightarrow\left[\begin{array}{l}x=\frac32:\frac52=\frac35\\ x=\frac12:\frac{11}{2}=\frac{1}{11}\end{array}\right.\)
b: \(\left|\frac75x+\frac12\right|=\left|\frac43x-\frac14\right|\)
=>\(\left[\begin{array}{l}\frac75x+\frac12=\frac43x-\frac14\\ \frac75x+\frac12=\frac14-\frac43x\end{array}\right.\Rightarrow\left[\begin{array}{l}\frac75x-\frac43x=-\frac14-\frac12\\ \frac75x+\frac43x=\frac14-\frac12\end{array}\right.\)
=>\(\left[\begin{array}{l}\frac{1}{15}x=-\frac34\\ \frac{41}{15}x=-\frac14\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-\frac34:\frac{1}{15}=-\frac34\cdot15=-\frac{45}{4}\\ x=-\frac14:\frac{41}{15}=-\frac14\cdot\frac{15}{41}=-\frac{15}{164}\end{array}\right.\)
c: \(\left|\frac54x-\frac72\right|-\left|\frac58x+\frac35\right|=0\)
=>\(\left|\frac54x-\frac72\right|=\left|\frac58x+\frac35\right|\)
=>\(\left[\begin{array}{l}\frac54x-\frac72=\frac58x+\frac35\\ \frac54x-\frac72=-\frac58x-\frac35\end{array}\right.\Rightarrow\left[\begin{array}{l}\frac54x-\frac58x=\frac35+\frac72\\ \frac54x+\frac58x=-\frac35+\frac72\end{array}\right.\)
=>\(\left[\begin{array}{l}\frac58x=\frac{41}{10}\\ \frac{15}{8}x=\frac{29}{10}\end{array}\right.\Rightarrow\left[\begin{array}{l}x=\frac{41}{10}:\frac58=\frac{41}{10}\cdot\frac85=\frac{164}{25}\\ x=\frac{29}{10}:\frac{15}{8}=\frac{29}{10}\cdot\frac{8}{15}=\frac{116}{75}\end{array}\right.\)
d: \(\left|\frac78x+\frac56\right|-\left|\frac12x+5\right|=0\)
=>\(\left|\frac78x+\frac56\right|=\left|\frac12x+5\right|\)
=>\(\left[\begin{array}{l}\frac78x+\frac56=\frac12x+5\\ \frac78x+\frac56=-\frac12x-5\end{array}\right.\Rightarrow\left[\begin{array}{l}\frac78x-\frac12x=5-\frac56\\ \frac78x+\frac12x=-5-\frac56\end{array}\right.\)
=>\(\left[\begin{array}{l}\frac38x=\frac{25}{6}\\ \frac{11}{8}x=-\frac{35}{6}\end{array}\right.\Rightarrow\left[\begin{array}{l}x=\frac{25}{6}:\frac38=\frac{25}{6}\cdot\frac83=\frac{200}{18}=\frac{100}{9}\\ x=-\frac{35}{6}:\frac{11}{8}=-\frac{35}{6}\cdot\frac{8}{11}=-\frac{140}{33}\end{array}\right.\)

\(a,\frac{2x}{3}=\frac{2y}{4}=\frac{4z}{5}\)và x + y + z = 49
Ta có : \(\frac{2x}{3}=\frac{2y}{4}=\frac{4z}{5}=\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{2}}=\frac{z}{\frac{5}{4}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{2}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{2}+\frac{5}{4}}=\frac{49}{\frac{19}{4}}=49\cdot\frac{4}{19}=\frac{196}{19}\)
Vậy : \(\hept{\begin{cases}\frac{x}{\frac{3}{2}}=\frac{196}{19}\\\frac{y}{\frac{4}{2}}=\frac{196}{19}\\\frac{z}{\frac{5}{4}}=\frac{169}{14}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{294}{19}\\y=\frac{392}{19}\\z=\frac{245}{19}\end{cases}}\)
\(b,\frac{x}{y}=\frac{3}{4};\frac{y}{z}=\frac{5}{7}\)và 2x + 3y - z = 186
Ta có : \(\frac{x}{y}=\frac{3}{4};\frac{y}{z}=\frac{5}{7}\Leftrightarrow\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)
\(\Leftrightarrow\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\)
\(\Leftrightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
\(\Leftrightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3\)
Vậy : \(\hept{\begin{cases}\frac{x}{15}=3\\\frac{y}{20}=3\\\frac{z}{28}=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=45\\y=60\\z=84\end{cases}}\)

a, \(\left|2x-3\right|=\left|3x-7\right|\)
\(\Rightarrow\orbr{\begin{cases}2x-3=3x-7\\2x-3=7-3x\end{cases}\Rightarrow}\orbr{\begin{cases}-x=-4\\5x=10\end{cases}\Rightarrow}\orbr{\begin{cases}x=2\\x=2\end{cases}\Rightarrow}x=2\)
b, \(\left|7x-1\right|-\left|2x-5\right|=0\)
\(\left|7x-1\right|=\left|2x-5\right|\)
\(\Rightarrow\orbr{\begin{cases}7x-1=2x-5\\7x-1=5-2x\end{cases}\Rightarrow}\orbr{\begin{cases}5x=-4\\9x=6\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{-4}{5}\\x=\frac{2}{3}\end{cases}}\)
c, \(\left|3x-1\right|+\left|4+3x\right|=0\)
Vì \(\left|3x-1\right|\ge0\); \(\left|4+3x\right|\ge0\)
\(\Rightarrow\left|3x-1\right|+\left|4+3x\right|\ge0\)
Dấu " = " xảy ra <=> \(\hept{\begin{cases}3x-1=0\\4+3x=0\end{cases}\Rightarrow}\hept{\begin{cases}3x=1\\3x=-4\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{1}{3}\\x=\frac{-4}{3}\end{cases}}\)(loại)
d, 2x + 1 = 25 => 2x = 24 => x = 12
đề là thế này?
(2x + 1)2 = 25
\(\Rightarrow\orbr{\begin{cases}2x+1=5\\2x+1=-5\end{cases}\Rightarrow}\orbr{\begin{cases}2x=4\\2x=-6\end{cases}\Rightarrow}\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)
\(\frac14-2x=5\)
\(2x=\frac14-5\)
\(2x=\frac{-19}{4}\)
\(x=-\frac{19}{4}:2\)
\(x=\frac{-19}{8}\)
\(\frac12x-\frac13=25\%\)
\(\frac12x-\frac13=\frac14\)
\(\frac12x=\frac14+\frac13\)
\(\frac12x=\frac{7}{12}\)
\(x=\frac{7}{12}:\frac12\)
\(x=\frac76\)