K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7

Vì VT của điều kiện đã cho không âm nên VP không âm, tức là \(5x-1\ge0\lrArr x\ge\frac15\) , như vậy tất cả những biểu thức bên trong giá trị tuyệt đối của pt đã cho đều dương nên ta có thể yên tâm bỏ dấu GTTĐ mà không cần phải xét trường hợp.

Từ điều kiện trên suy ra:

\(x+1+x+7+x+10+x+15=5x-1\)

\(\rArr4x+33=5x-1\)

\(\rArr x=34\)

Vậy chỉ có \(x=34\) thỏa mãn yêu cầu bài toán.


13 tháng 9

chắc bạn đang học lớp 7 nên mik sẽ giải kiểu lớp 7 nha
mỗi câu mik chia làm 2 bài nhé!
Bài 1. Tìm \(\left(\right. x , y \left.\right) \in \mathbb{Q}^{2}\)

(a) \(x + 3 y - x \sqrt{5} = y \sqrt{5} + 7\)

\(\Rightarrow - \left(\right. x + y \left.\right) \sqrt{5} = 7 - x - 3 y\).

Vế trái vô tỉ (nếu \(x + y \neq 0\)), vế phải hữu tỉ.
\(\Rightarrow x + y = 0 , \textrm{ }\textrm{ } 7 - x - 3 y = 0\).

\(\Rightarrow x = - y , \textrm{ }\textrm{ } 7 + y - 3 y = 0 \Rightarrow y = \frac{7}{2} , x = - \frac{7}{2}\).

Đáp số: \(\left(\right. - \frac{7}{2} , \frac{7}{2} \left.\right)\).


(b) \(5 x + y - \left(\right. 2 x - 1 \left.\right) \sqrt{7} = y \sqrt{7} + 2\).

\(\Rightarrow - \left(\right. 2 x + y - 1 \left.\right) \sqrt{7} = 2 - 5 x - y\).

\(\Rightarrow 2 x + y - 1 = 0 , \textrm{ }\textrm{ } 2 - 5 x - y = 0\).

Giải hệ:

\(\left{\right. 2 x + y = 1 \\ 5 x + y = 2 \Rightarrow x = \frac{1}{3} , y = \frac{1}{3} .\)

Đáp số: \(\left(\right. \frac{1}{3} , \frac{1}{3} \left.\right)\).


Bài 2. Tìm \(\left(\right. x , y \left.\right) \in \mathbb{Q}^{2}\)

(a) \(x + y + 61 = 10 \sqrt{x} + 12 \sqrt{y}\).

Đặt \(x = a^{2} , y = b^{2}\).

\(\Rightarrow a^{2} + b^{2} + 61 = 10 a + 12 b\).

Thử \(a = 5 , b = 6\): \(25 + 36 + 61 = 122 , \textrm{ }\textrm{ } 10 \cdot 5 + 12 \cdot 6 = 122\).

Đáp số: \(\left(\right. 25 , 36 \left.\right)\).


(b) \(2 x + y + 4 = 2 \sqrt{x} \left(\right. \sqrt{y} + 2 \left.\right)\).

Đặt \(x = a^{2} , y = b^{2}\).

\(\Rightarrow 2 a^{2} + b^{2} + 4 = 2 a b + 4 a\).

\(\Rightarrow \left(\right. a - b \left.\right)^{2} + 2 \left(\right. a - 2 \left.\right) = 0\).

\(\Rightarrow a = 2 , b = 2\).

Đáp số: \(\left(\right. 4 , 4 \left.\right)\).


👉 Vậy:

  • Bài 1(a): \(\left(\right. - 7 / 2 , 7 / 2 \left.\right)\).
  • Bài 1(b): \(\left(\right. 1 / 3 , 1 / 3 \left.\right)\).
  • Bài 2(a): \(\left(\right. 25 , 36 \left.\right)\).
  • Bài 2(b): \(\left(\right. 4 , 4 \left.\right)\).
    cho mik xin tick nha. Cảm ơn cậu !


Đặt \(\frac{x}{2}=\frac{y}{3}=k\)

=>x=2k; y=3k

\(xy^2=144\)

=>\(2k\cdot\left(3k\right)^2=144\)

=>\(2k\cdot9k^2=144\)

=>\(18k^3=144\)

=>\(k^3=8=2^3\)

=>k=2

=>\(\begin{cases}x=2\cdot2=4\\ y=3\cdot2=6\end{cases}\)

17 tháng 5 2019

c) Tìm các số nguyên x,y thỏa mãn

*\(2xy+6x-y=10\)

\(\Leftrightarrow\left(2xy+6x\right)-y-3=10-3=7\)

\(\Leftrightarrow2x\left(y+3\right)-\left(y+3\right)=7\)

\(\Leftrightarrow\left(y+3\right)\left(2x-1\right)=7\)

Lập bảng xét ước nữa là xong.

\(xy+4x-3y=1\Leftrightarrow\left(xy+4x\right)-3y-12=1-12=-11\)

\(\Leftrightarrow x\left(y+4\right)-\left(3y+12\right)=-11\)

\(\Leftrightarrow x\left(y+4\right)-3\left(y+4\right)=-11\)

\(\Leftrightarrow\left(x-3\right)\left(y+4\right)=-11\)

Lập bảng xét ước nữa là xong.

17 tháng 5 2019

Mới nhìn vào thấy bài toán hay hay lạ kì.

Thêm một vào bớt một ra

Tức thì bài toán trở nên dễ dàng:

 \(\frac{x}{50}-\frac{x-1}{51}=\frac{x+2}{48}-\frac{x-3}{53}\) 

\(\Leftrightarrow\frac{x}{50}+1-\frac{x-1}{51}-1=\frac{x+2}{48}+1-\frac{x-3}{53}-1\)

\(\Leftrightarrow\left(\frac{x}{50}+1\right)-\left(\frac{x-1}{51}+1\right)=\left(\frac{x+2}{48}+1\right)-\left(\frac{x-3}{53}+1\right)\)

\(\Leftrightarrow\frac{x+50}{50}-\frac{x+50}{51}=\frac{x+50}{48}-\frac{x+50}{53}\)

\(\Leftrightarrow\frac{x+50}{50}-\frac{x+50}{51}-\frac{x+50}{48}+\frac{x+50}{53}=0\)

\(\Leftrightarrow\left(x+50\right)\left(\frac{1}{50}-\frac{1}{51}-\frac{1}{48}+\frac{1}{53}\right)=0\)

Dễ thấy \(\left(\frac{1}{50}-\frac{1}{51}-\frac{1}{48}+\frac{1}{53}\right)\ne0\)

Do đó x + 50 = 0 hay x = -50

20 tháng 9

x/2=y/3=z/5

Suy ra 2x/4=y/3=3z/15

Suy ra 2x/4=y/3=3z/15=2x+y-3z/4+3-15=-8/-8=1 ( tính chất dãy tỉ số bằng nhau)

Suy ra +)2x/4=1 suy ra x=2

+) y/3=1 suy ra y=3

+)3z/15=1 suy ra z=5

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{2x+y-3z}{2\cdot2+3-3\cdot5}=\frac{-8}{-8}=1\)

=>\(\begin{cases}x=2\cdot1=2\\ y=3\cdot1=3\\ z=5\cdot1=5\end{cases}\)

1) cho a,b,c là 3 số thực khác 0 thỏa mãn a+b-c/c=b+c-a/a=c+a-b/bhãy tính B= (1+b/a)(1+a/c)(1+c/b)2) CHo 2 số a, b thỏ mã a+3b= 0. tính giá trị M = \(\frac{2a+b}{a-b}=\frac{2a-b}{a+2b}\)3) Cmr b= \(2x^2-12xy+5y^2\) và c= \(-x-4y^2+12xy\) ko cùng nhận giá trị âm4) CHo p/s : d= \(\frac{n^2+3n-21}{2-n}\)a) tính d biết \(n^2-3n=0\)b) Tìm tất cả giá trị của n để d nguyên5)Tìm các số nguyên m thỏa mãn (5-m)(2m-1)>06)Tìm x,y...
Đọc tiếp

1) cho a,b,c là 3 số thực khác 0 thỏa mãn a+b-c/c=b+c-a/a=c+a-b/b
hãy tính B= (1+b/a)(1+a/c)(1+c/b)
2) CHo 2 số a, b thỏ mã a+3b= 0. tính giá trị M = \(\frac{2a+b}{a-b}=\frac{2a-b}{a+2b}\)
3) Cmr b= \(2x^2-12xy+5y^2\) và c= \(-x-4y^2+12xy\) ko cùng nhận giá trị âm
4) CHo p/s : d= \(\frac{n^2+3n-21}{2-n}\)
a) tính d biết \(n^2-3n=0\)
b) Tìm tất cả giá trị của n để d nguyên
5)Tìm các số nguyên m thỏa mãn (5-m)(2m-1)>0
6)Tìm x,y để \(\left(x^3-4x\right)^2+3x^2.|y-3|=0\)
7)Cho \(\frac{a}{b}=\frac{c}{d}\)cmr \(\frac{a^2+c^2}{b^2+c^2}=\frac{a}{b}\)
8)\(\frac{3x-2y}{37}=\frac{5y-3z}{15}=\frac{2z-5x}{2}\) và 10x-3y-2z=-4
9)Cho tỷ lệ thức \(\frac{a}{b}=\frac{c}{d}\). Cmr (a+2c)(b+d)=(a+c)(b+2d)
10)Cho x,y,z là cá số khác 0 và \(x^2=yz,y^2=xz,z^2=xy\). Cmr x=y=z
11)Tìm x biết \(\frac{x-1}{2009}+\frac{x-2}{2008}=\frac{x-3}{2007}+\frac{x-4}{2006}\)

0
8 tháng 10 2017

1/ Ta có \(\frac{1}{3}< \frac{9}{x}< \frac{1}{2}\)

\(\Rightarrow\frac{9}{27}< \frac{9}{x}< \frac{9}{18}\)

\(\Rightarrow27>x>18\)

Vì \(x\in Z\Rightarrow x\in\left\{19,20,...,26\right\}\)

Vậy....

Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)

=>x=2k; y=3k; z=5k

Ta có: \(x^2+y^2-z^2=-48\)

=>\(\left(2k\right)^2+\left(3k\right)^2-\left(5k\right)^2=-48\)

=>\(4k^2+9k^2-25k^2=-48\)

=>\(-12k^2=-48\)

=>\(k^2=4\)

=>\(\left[\begin{array}{l}k=2\\ k=-2\end{array}\right.\)

TH1: k=2

=>\(\begin{cases}x=2\cdot2=4\\ y=3\cdot2=6\\ z=5\cdot2=10\end{cases}\)

TH2: k=-2

=>\(\begin{cases}x=2\cdot\left(-2\right)=-4\\ y=3\cdot\left(-2\right)=-6\\ z=5\cdot\left(-2\right)=-10\end{cases}\)

20 tháng 9

your gay