
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


S=(1+2+⋯+100)(12+22+⋯+102)(65⋅111−13⋅15⋅17)
1+2 +⋯+100=2100⋅101=5050
1mũ 2+2 mũ 2+⋯+102=610⋅11⋅21=385
65⋅111−13⋅15⋅17=7215−3315=3900
S=5050⋅385⋅3900=7582575000
- Tổng từ 1 đến 100:
\(1 + 2 + \ldots + 100 = \frac{100 \times 101}{2} = 5050\)
- Tổng bình phương từ 1 đến 10:
\(1^{2} + 2^{2} + \ldots + 10^{2} = \frac{10 \times 11 \times 21}{6} = 385\)
- Tính phần trong ngoặc:
\(65 \times 111 = 7215\)\(13 \times 15 \times 17 = 195 \times 17 = 3315\)\(65 \times 111 - 13 \times 15 \times 17 = 7215 - 3315 = 3900\)
- Nhân tất cả:
\(S=5050\times385\times3900=7.582.575.000\)
Kết luận:
\(\boxed{S = 7.582.575.000}\)

\(1^3+2^3+3^3+\cdots+100^3\)
\(=\left(1+2+\cdots+100\right)^2\)
\(=\left(100\cdot\frac{101}{2}\right)^2=\left(50\cdot101\right)^2=5050^2=25502500\)

1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 )
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 )
=> A = 2^21 là một lũy thừa của 2
3.
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2
1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 )
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 )
=> A = 2^21 là một lũy thừa của 2
3.
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2

Bài 1:
6) 3x + 2³ = 17 + 3²
3x + 8 = 17 + 9
3x + 8 = 26
3x = 26 - 8
3x = 18
x = 18 : 3
x = 6
Vậy x = 6
Bài 2:
3) 145 - (125 + x) = 12
125 + x = 145 - 12
125 + x = 133
x = 133 - 125
x = 8
Vậy x = 8
6) 3³ - (x - 5) = 2²
27 - (x - 5) = 4
x - 5 = 27 - 4
x - 5 = 23
x = 23 + 5
x = 28
Vậy x = 28
9) (x + 7) - 15⁰ = 202 - 19
(x + 7) - 1 = 189
x + 7 = 189 + 1
x + 7 = 190
x = 190 - 7
x - 183
Vậy x = 183

\(2^3\cdot17-2^3\cdot14\)
\(=2^3\left(17-14\right)\)
\(=8\cdot3=24\)

\(75-\left(3.5^2-4.2^3\right)\)
\(=75-\left(3.25-4.8\right)\)
\(=75-\left(75-32\right)\)
\(=75-43\)
\(=22\)

1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 )
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 )
=> A = 2^21 là một lũy thừa của 2
3.
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2

\(\left(x+2\right)^2=3\)
=>\(\left[\begin{array}{l}x+2=\sqrt3\\ x+2=-\sqrt3\end{array}\right.\Rightarrow\left[\begin{array}{l}x=\sqrt3-2\\ x=-\sqrt3-2\end{array}\right.\)
\(n^2=4\)
\(\Rightarrow\left[\begin{array}{l}n=2\\ n=-2\end{array}\right.\)
vậy n=2 hoặc n=-2
đáp là 2 nhé bạn vì 2 mũ 2 = 4