K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

S
20 tháng 7

\(n^2=4\)

\(\Rightarrow\left[\begin{array}{l}n=2\\ n=-2\end{array}\right.\)

vậy n=2 hoặc n=-2

20 tháng 7

đáp là 2 nhé bạn vì 2 mũ 2 = 4


27 tháng 8

S=(1+2+⋯+100)(12+22+⋯+102)(65⋅111−13⋅15⋅17)

1+2 +⋯+100=2100⋅101​=5050

1mũ 2+2 mũ 2+⋯+102=610⋅11⋅21​=385

65⋅111−13⋅15⋅17=7215−3315=3900

S=5050⋅385⋅3900=7582575000

27 tháng 8
  1. Tổng từ 1 đến 100:

\(1 + 2 + \ldots + 100 = \frac{100 \times 101}{2} = 5050\)

  1. Tổng bình phương từ 1 đến 10:

\(1^{2} + 2^{2} + \ldots + 10^{2} = \frac{10 \times 11 \times 21}{6} = 385\)

  1. Tính phần trong ngoặc:

\(65 \times 111 = 7215\)\(13 \times 15 \times 17 = 195 \times 17 = 3315\)\(65 \times 111 - 13 \times 15 \times 17 = 7215 - 3315 = 3900\)

  1. Nhân tất cả:

\(S=5050\times385\times3900=7.582.575.000\)


Kết luận:

\(\boxed{S = 7.582.575.000}\)

\(1^3+2^3+3^3+\cdots+100^3\)

\(=\left(1+2+\cdots+100\right)^2\)

\(=\left(100\cdot\frac{101}{2}\right)^2=\left(50\cdot101\right)^2=5050^2=25502500\)

MT
16 tháng 8

25502500

13 tháng 7 2017

1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101 
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 ) 
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101 
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21 
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 ) 
=> A = 2^21 là một lũy thừa của 2 
3. 
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101 
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100) 
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2 
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101 
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 ) 
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2 
c) xem lại đề ý c xem quy luật như thế nào nhé. 
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151 
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150) 
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2

13 tháng 7 2017

1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101 
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 ) 
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101 
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21 
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 ) 
=> A = 2^21 là một lũy thừa của 2 
3. 
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101 
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100) 
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2 
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101 
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 ) 
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2 
c) xem lại đề ý c xem quy luật như thế nào nhé. 
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151 
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150) 
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2

16 tháng 9

Bài 1:

6) 3x + 2³ = 17 + 3²

3x + 8 = 17 + 9

3x + 8 = 26

3x = 26 - 8

3x = 18

x = 18 : 3

x = 6

Vậy x = 6

Bài 2:

3) 145 - (125 + x) = 12

125 + x = 145 - 12

125 + x = 133

x = 133 - 125

x = 8

Vậy x = 8

6) 3³ - (x - 5) = 2²

27 - (x - 5) = 4

x - 5 = 27 - 4

x - 5 = 23

x = 23 + 5

x = 28

Vậy x = 28

9) (x + 7) - 15⁰ = 202 - 19

(x + 7) - 1 = 189

x + 7 = 189 + 1

x + 7 = 190

x = 190 - 7

x - 183

Vậy x = 183

\(2^3\cdot17-2^3\cdot14\)

\(=2^3\left(17-14\right)\)

\(=8\cdot3=24\)

20 tháng 8

=2 mũ 3.(17-14)

=2 mũ 3 .3

=8.3

=24

DH
Đỗ Hoàn
CTVHS VIP
20 tháng 8

\(75-\left(3.5^2-4.2^3\right)\)

\(=75-\left(3.25-4.8\right)\)

\(=75-\left(75-32\right)\)

\(=75-43\)

\(=22\)

1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101 
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 ) 
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101 
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21 
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 ) 
=> A = 2^21 là một lũy thừa của 2 
3. 
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101 
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100) 
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2 
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101 
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 ) 
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2 
c) xem lại đề ý c xem quy luật như thế nào nhé. 
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151 
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150) 
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2

14 tháng 7 2017
tự hỏi và tự trả lời :)

\(\left(x+2\right)^2=3\)

=>\(\left[\begin{array}{l}x+2=\sqrt3\\ x+2=-\sqrt3\end{array}\right.\Rightarrow\left[\begin{array}{l}x=\sqrt3-2\\ x=-\sqrt3-2\end{array}\right.\)