K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

Do đó: ΔAMB=ΔAMC

=>\(\hat{AMB}=\hat{AMC}\)

\(\hat{AMB}+\hat{AMC}=180^0\) (hai góc kề bù)

nên \(\hat{AMB}=\hat{AMC}=\frac{180^0}{2}=90^0\)

=>AM⊥BC tại M

b: Xét ΔABC có

AM,BN là các đường trung tuyến

AM cắt BN tại G

Do đó: G là trọng tâm của ΔABC

=>AG=2GM

mà AG=GG'

nên GG'=2GM

=>M là trung điểm của GG'

Xét ΔMBG vuông tại M và ΔMCG' vuông tại M có

MB=MC

MG=MG'

Do đó: ΔMBG=ΔMCG'

=>\(\hat{MBG}=\hat{MCG^{\prime}}\)

mà hai góc này là hai góc ở vị trí so le trong

nên BG//CG'

c: Xét ΔABC có

BN là đường trung tuyến

G là trọng tâm

Do đó: BG=2GN

mà BG=CG'(ΔMBG=ΔMCG')

nên CG'=2GN

d: Ta có: AB=AC

=>A nằm trên đường trung trực của BC(1)

ta có: MB=MC

=>M nằm trên đường trung trực của BC(2)

Từ (1),(2) suy ra AM là đường trung trực của BC

=>G'G là đường trung trực của BC

a) Chứng minh AM vuông góc BC
Tam giác ABC cân tại A nên AM vừa là trung tuyến vừa là đường cao.
Suy ra: AM vuông góc BC.


b) Chứng minh CG′ song song với BG
G là trọng tâm tam giác ABC nên chia mỗi trung tuyến theo tỉ lệ 2:1.
G là trung điểm của AG′ nên AG′ = 2AG.
Từ đó, tứ giác CG′BG là hình bình hành ⇒ CG′ song song BG.


c) Chứng minh CG′ = 2GN
Từ hình bình hành CG′BG ⇒ G là trung điểm của CG′.
Suy ra: CG′ = 2GN.


d) Chứng minh GG′ là đường trung trực của BC
Tam giác cân tại A ⇒ AM vừa là trung tuyến, vừa là đường cao.
G thuộc AM, G′ đối xứng với A qua G nên GG′ cùng phương với AM.
AM vuông góc và đi qua trung điểm của BC ⇒ GG′ là đường trung trực của BC.

5 tháng 5 2017

Có điểm C' ?

5 tháng 5 2017

Hình như là điểm C đó cậu.Chắc mình gõ nhầm

26 tháng 4 2016

Xét tam giac ABC cân tại A ta có

AM là đường trung tuyến (gt)

=> AM là đường cao

--> AM vuong góc BC

ta có : AM là đường trung tuyến (gt)-> M là trung điểm BC-> BH=1/2 BC=1/2.10=5 cm

Xét tam giac ABM vuông tại HM

AB2=BM2+AM2 ( định lý pitago)

132= 52 +AM2

AM2 =169-25

AM2=144

AM=12

b) Xét tam giác ABC ta có

AM là đường trung tuyến (gt)

GM=1/3AM

-> G là trọng tâm tam giác ABC

-> BG là đường trung tuyến

mà BG cat AC tại N (gt)

nên BN là đường trung tuyến

-> N là trung điềm AC

-> AN=NC

c) ta có GM=1/3AM=1/3.12=4 cm

Xét tam giac BGM  vuông tại M ta có

BG2 =BM2+GM( dinh lý pitago)

BG2=42+32

BG2=25

BG=5

Xét tam giac ABC ta có"

BN là đường trung tuyến (cmb)

G là trọng tâm (cmb)

-> BG=2/3 BN

=> BN=3/2 BG=3/2.5=15/2=7.5 cm

d) Xét tam giác ABC ta có

 G là trọng tâm (cmb)

-> CG là đường trung tuyến 

mà CG cắt AB lại L (gt)

nên L là trung điềm AB

ta có

AL=AB:2 ( L là trung điểm AB)

AN=AC:2 (N là trung điểm AC)

AB=AC ( tam giác ABC cân tại A)

--> AL =AN

-> tam giác ALN cân tại A

ta có :

góc ALN= (180- góc A):2 ( tam giác ALN cân tại A)

goc ABC =( 180-góc A);2 ( tam giác ABC cân tại A)

==> goc ALN= goc ABC

mà 2 góc nằm ở vị trí đồng vị 

nên LN //BC

26 tháng 4 2016

A B C

đAY LÀ HINGF

21 tháng 7 2018

Chỉ còn vài tiếng nữa là mình nộp bài rồi, mong các bạn dành ra ít thời gian để giúp đỡ mình. Mình sẽ tích đúng cho các bạn, mình cảm ơn trước!!!!

13 tháng 7 2019

A B C M N Q P O R S T A B C H M D I A B C D K G M K E P F (Hình a) (Hình b) (Hình c) Q I

Bài toán 1: (Hình a)

Gọi đường thẳng qua N vuông góc với AN cắt AC tại R, qua P kẻ đường thẳng song song với BC. Đường thẳng này cắt AM,AN,BC lần lượt tại S,T,K.

Ta thấy \(\Delta\)APR có AN vừa là đường cao, đường phân giác => \(\Delta\)APR cân tại A => AP = AR, NP = NR

Áp dụng hệ quả ĐL Thales \(\frac{BM}{PS}=\frac{CM}{KS}\left(=\frac{AM}{AS}\right)\)=> PS = KS

Áp dụng ĐL đường phân giác trong tam giác: \(\frac{TK}{TP}=\frac{AK}{AP}\Rightarrow\frac{ST+SK}{TP}=\frac{AK}{AR}\)

\(\Rightarrow\frac{2ST+PT}{TP}=\frac{AR+RK}{AR}\Rightarrow\frac{2ST}{TP}=\frac{RK}{AR}\)

Dễ thấy NS là đường trung bình của  \(\Delta\)RKP => RK = 2NS. Do đó \(\frac{ST}{TP}=\frac{NS}{AR}\)

Đồng thời NS // AR, suy ra \(\frac{ST}{TP}=\frac{NS}{AR}=\frac{SQ}{QA}\)=> QT // AP (ĐL Thaels đảo)

Mà AP vuông góc PO nên QT vuông góc PO. Từ đây suy ra T là trực tâm của \(\Delta\)POQ

=> QO vuông góc PT. Lại có PT // BC nên QO vuông góc BC (đpcm).

Bài toán 2: (Hình b)

Ta có IB = IC => \(\Delta\)BIC cân tại I => ^IBC = ^ICB = ^ACB/2 => \(\Delta\)MCI ~ \(\Delta\)MBC (g.g)

=> MC2 = MI.MB. Xét \(\Delta\)AHC có ^AHC = 900 , trung tuyến HM => HM = MC

Do đó MH2 = MI.MB => \(\Delta\)MIH ~ \(\Delta\)MHB (c.g.c) => ^MHI = ^MBH = ^MBC = ^MCI

=> Tứ giác CHIM nội tiếp. Mà CI là phân giác ^MCH nên (IH = (IM hay IM = IH (đpcm).

Bài toán 3: (Hình c)

a) Gọi đường thẳng qua C vuông góc CB cắt MK tại F, DE cắt BC tại Q, CG cắt BD tại I.

Áp dụng ĐL Melelaus:\(\frac{MB}{MC}.\frac{GA}{GB}.\frac{DC}{DA}=1\)suy ra \(\frac{DC}{DA}=2\)=> A là trung điểm DC

Khi đó G là trọng tâm của \(\Delta\)BCD. Do CG cắt BD tại I nên I là trung điểm BD

Dễ thấy \(\Delta\)BCD vuông cân tại B => BI = CM (=BC/2). Từ đó \(\Delta\)IBC = \(\Delta\)MCF (g.c.g)

=> CB = CF => \(\Delta\)BCF vuông cân ở C => ^CBA = ^CBF (=450) => B,A,F thẳng hàng

=> CA vuông góc GF. Từ đó K là trực tâm của \(\Delta\)CGF => GK vuông góc CF => GK // CM

Theo bổ đề hình thang thì P,Q lần lượt là trung điểm GK,CM. Kết hợp \(\Delta\)CEM vuông ở E

=> EQ=CM/2. Áp dụng ĐL Melelaus có \(\frac{GD}{GM}.\frac{EQ}{ED}.\frac{CM}{CQ}=1\)=> \(\frac{EQ}{ED}=\frac{1}{4}\)

=> \(\frac{ED}{CM}=2\)=> DE = 2CM = BC (đpcm).

b) Theo câu a thì EQ là trung tuyến của \(\Delta\)CEM vuông tại E => EQ = QC => ^QEC = ^QCE

Vì vậy ^PEG = ^QEC = ^QCE = ^PGE => \(\Delta\)EPG cân tại P => PG = PE (đpcm).

1 tháng 7 2020

Ko  có hình làm sao bạn

1 tháng 7 2020

A B C G N M N K

a. Xét tam giác ABM và tam giác ACN có 

               góc A chung

              AB = AC [ vì tam giác ABC cân ]

             AM = AN [ \(AM=AN=\frac{AB}{2}=\frac{AC}{2}\)]

Do đó ; tam giác ABM = tam giác ACN [ c.g.c ]

b.Xét tam giác ANG và tam giác BNK có 

              NG = NK

             góc ANG = góc BNK [ đối đỉnh ]

            AN = BN [ vì N là tđ' của AB ]

Do đó ; tam giác ANG = tam giác BNK [ c.g.c ]

\(\Rightarrow\)góc AGN = góc BKN [ ở vị trí so le trong ]

\(\Rightarrow\)AG // BK