
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a/ (X+1)/35+1+(x+3)/33+1 =(x+5)/31+(x+7)/29+1+1
=>(x+36)/35+(x+36)/33-(x+36)/31-(x+36)/27=0
=>(X+36)(1/35+1/33-1/31-1/29)=0
=> x+36=0(vì c=vế 2 luôn luôn khác 0)
=>x=-36
b/ CMTT câu a
trừ tung phân số cho 1 ta được x=2004

a) \(\frac{1}{4}+\frac{3}{4}:x=\frac{5}{8}\)
\(\frac{3}{4}:x=\frac{3}{8}\)
\(x=2\)
vậy x=2
b) \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x.\left(x+1\right)}=\frac{2000}{2002}\)
\(\frac{2}{6}+\frac{2}{12}+...+\frac{2}{x.\left(x+1\right)}=\frac{2000}{2002}\)
\(2.\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{2000}{2002}\)
\(2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2000}{2002}\)
\(2.\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2000}{2002}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{1000}{2002}\)
\(\frac{1}{x+1}=\frac{1}{2002}\)
\(x+1=2002\)
\(x=2001\)
vậy x=2001

S1=1+(-2)+...+2001+(-2002)
Có:(2002-1):1+1=2002(số)
S1=(1+(-2))+...+(2001+(-2002))
S1=(-1)+...+(-1)
Có:2002:2=1001(số)
=>S1=(-1).1001
=>S1=-1001
nhóm âm vào âm.dương vào dương
hoặc nhóm số đầu với số cuối số 2 với số kế cuối

Ta có: 1/3+1/6+1/10+...+2/x*(x+1)
=2/6+2/12+2/20+...+2/x*(x+1)
=2/2*3+2/3*4+2/4*5+...+2/x*(x+1)
=2*(1/2*3+1/3*4+1/4*5+...+1/x*(x+1))
=2*(1/2-1/3+1/3-1/4+1/4-1/5+...+1/x-1/x+1)
=2*(1/2-1/x+1)=2000/2002
=>1/2-1/x+1=2000/2002:2
=>1/2-1/x+1=500/1001
=>1/x+1=1/2-500/1001
=>1/x+1=1/2002
=>x+1=2002
=>x=2002-1
=>x=2001 thuộc N
Vậy x=2001
*Mình ko biết ấn dấu phân số với dấu nhân ở đâu, bạn thông cảm nhé!

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x.\left(x+1\right)}=\frac{2000}{2002}\)
\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x.\left(x+1\right)}\)=\(\frac{2000}{2002}\)
2.(\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x.\left(x+1\right)}\))=\(\frac{2000}{2002}\)
2.\(\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{2000}{2002}\)
2.(\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\)) = \(\frac{2000}{2002}\)
2.\(\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2000}{2002}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{1000}{2002}\)
\(\frac{1}{x+1}=\frac{1}{2}-\frac{1000}{2002}\)
\(\frac{1}{x+1}=\frac{1}{2002}\)
2002.1 = (x+1).1
2002 = x+1
x=2001 (T/M)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2000}{2002}\)
\(\Rightarrow\) \(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2000}{2002}\)
\(\Rightarrow\) \(2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2000}{2002}\)
\(\Rightarrow\) \(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2000}{2002}\)
\(\Rightarrow\) \(2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2000}{2002}\)
\(\Rightarrow\) \(\frac{1}{2}-\frac{1}{x+1}=\frac{500}{1001}\)
\(\Rightarrow\) \(\frac{1}{x+1}=\frac{1}{2002}\)
\(\Rightarrow\) \(x+1=2002\) \(\Rightarrow\) \(x=2001\)
\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\ldots+\frac{1}{8.9.10}\right).x=\frac{2000}{2002}\)
\(2\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\cdots+\frac{1}{8.9.10}\right).x=\frac{4000}{2002}\)
\(\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\cdots+\frac{2}{8.9.10}\right).x=\frac{2000}{1001}\)
\(\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\cdots+\frac{1}{8.9}-\frac{1}{9.10}\right).x=\frac{2000}{1001}\)
\(\left(\frac12-\frac{1}{90}\right).x=\frac{2000}{1001}\)
\(\frac{22}{45}.x=\frac{2000}{1001}\)
\(x=\frac{2000}{1001}:\frac{22}{45}\)
\(x=\frac{45000}{11011}\)
**Trả lời:
Đề bài: \(\left(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\cdots+\frac{1}{8\cdot9\cdot10}\right)\cdot x=\frac{2000}{2002}\).
Giải:
+ Ta có: \(\frac{11}{45} \cdot x = \frac{2000}{2002} = \frac{1000}{1001}\) \(x = \frac{1000}{1001} : \frac{11}{45} = \frac{1000}{1001} \cdot \frac{45}{11} = \frac{45000}{11011}\) + Vậy \(x = \frac{45000}{11011}\).+ Ta xét tổng \(A=\frac{1}{1 \cdot2 \cdot3}+\frac{1}{2 \cdot3 \cdot4}+\ldots+\frac{1}{8 \cdot9 \cdot10}\).
+ Ta có công thức tổng quát: \(\frac{1}{n \left(\right. n + 1 \left.\right) \left(\right. n + 2 \left.\right)} = \frac{1}{2} \left(\right. \frac{1}{n \left(\right. n + 1 \left.\right)} - \frac{1}{\left(\right. n + 1 \left.\right) \left(\right. n + 2 \left.\right)} \left.\right)\)
+ Áp dụng công thức này, ta có:
\(A=\frac{1}{2}\left(\right.\frac{1}{1 \cdot2}-\frac{1}{2 \cdot3}+\frac{1}{2 \cdot3}-\frac{1}{3 \cdot4}+\ldots+\frac{1}{8 \cdot9}-\frac{1}{9 \cdot10}\left.\right)\)
\(A = \frac{1}{2} \left(\right. \frac{1}{1 \cdot 2} - \frac{1}{9 \cdot 10} \left.\right) = \frac{1}{2} \left(\right. \frac{1}{2} - \frac{1}{90} \left.\right) = \frac{1}{2} \left(\right. \frac{45}{90} - \frac{1}{90} \left.\right) = \frac{1}{2} \cdot \frac{44}{90} = \frac{22}{90} = \frac{11}{45}\)
\(\Rightarrow A=\frac{11}{45}\).