K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1
17 tháng 6

\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\ldots+\frac{1}{8.9.10}\right).x=\frac{2000}{2002}\)

\(2\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\cdots+\frac{1}{8.9.10}\right).x=\frac{4000}{2002}\)

\(\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\cdots+\frac{2}{8.9.10}\right).x=\frac{2000}{1001}\)

\(\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\cdots+\frac{1}{8.9}-\frac{1}{9.10}\right).x=\frac{2000}{1001}\)

\(\left(\frac12-\frac{1}{90}\right).x=\frac{2000}{1001}\)

\(\frac{22}{45}.x=\frac{2000}{1001}\)

\(x=\frac{2000}{1001}:\frac{22}{45}\)

\(x=\frac{45000}{11011}\)

17 tháng 6

**Trả lời:

Đề bài: \(\left(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\cdots+\frac{1}{8\cdot9\cdot10}\right)\cdot x=\frac{2000}{2002}\).

Giải:
+ Ta xét tổng \(A=\frac{1}{1 \cdot2 \cdot3}+\frac{1}{2 \cdot3 \cdot4}+\ldots+\frac{1}{8 \cdot9 \cdot10}\).
+ Ta có công thức tổng quát: \(\frac{1}{n \left(\right. n + 1 \left.\right) \left(\right. n + 2 \left.\right)} = \frac{1}{2} \left(\right. \frac{1}{n \left(\right. n + 1 \left.\right)} - \frac{1}{\left(\right. n + 1 \left.\right) \left(\right. n + 2 \left.\right)} \left.\right)\) 
+ Áp dụng công thức này, ta có: 
\(A=\frac{1}{2}\left(\right.\frac{1}{1 \cdot2}-\frac{1}{2 \cdot3}+\frac{1}{2 \cdot3}-\frac{1}{3 \cdot4}+\ldots+\frac{1}{8 \cdot9}-\frac{1}{9 \cdot10}\left.\right)\) 
\(A = \frac{1}{2} \left(\right. \frac{1}{1 \cdot 2} - \frac{1}{9 \cdot 10} \left.\right) = \frac{1}{2} \left(\right. \frac{1}{2} - \frac{1}{90} \left.\right) = \frac{1}{2} \left(\right. \frac{45}{90} - \frac{1}{90} \left.\right) = \frac{1}{2} \cdot \frac{44}{90} = \frac{22}{90} = \frac{11}{45}\) 
\(\Rightarrow A=\frac{11}{45}\).

+ Ta có: \(\frac{11}{45} \cdot x = \frac{2000}{2002} = \frac{1000}{1001}\) \(x = \frac{1000}{1001} : \frac{11}{45} = \frac{1000}{1001} \cdot \frac{45}{11} = \frac{45000}{11011}\) + Vậy \(x = \frac{45000}{11011}\).
5 tháng 4 2016

a/  (X+1)/35+1+(x+3)/33+1 =(x+5)/31+(x+7)/29+1+1

=>(x+36)/35+(x+36)/33-(x+36)/31-(x+36)/27=0

=>(X+36)(1/35+1/33-1/31-1/29)=0

=> x+36=0(vì c=vế 2 luôn luôn khác 0)

=>x=-36

b/ CMTT câu a 

trừ tung phân số cho 1 ta được x=2004

5 tháng 4 2016

Ngu người khi ko biết làm bài lày

29 tháng 3 2019

a) \(\frac{1}{4}+\frac{3}{4}:x=\frac{5}{8}\)

                  \(\frac{3}{4}:x=\frac{3}{8}\)

                        \(x=2\)

vậy x=2

b) \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x.\left(x+1\right)}=\frac{2000}{2002}\)

\(\frac{2}{6}+\frac{2}{12}+...+\frac{2}{x.\left(x+1\right)}=\frac{2000}{2002}\)

\(2.\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{2000}{2002}\)

\(2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2000}{2002}\)

\(2.\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2000}{2002}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{1000}{2002}\)

\(\frac{1}{x+1}=\frac{1}{2002}\)

\(x+1=2002\)

\(x=2001\)

vậy x=2001

29 tháng 3 2019

\(\frac{1}{4}+\frac{3}{4}:x=\frac{5}{8}\)

\(\frac{3}{4}:x=\frac{5}{8}-\frac{1}{4}\)

\(\frac{3}{4}:x=\frac{5}{8}-\frac{2}{8}\)

\(\frac{3}{4}:x=\frac{3}{8}\)

\(x=\frac{3}{4}:\frac{3}{8}\)

\(x=\frac{3}{4}.\frac{8}{3}\)

\(x=\frac{8}{4}\)

\(x=\frac{1}{2}=2\)

24 tháng 7 2017

S1=1+(-2)+...+2001+(-2002)

Có:(2002-1):1+1=2002(số)

S1=(1+(-2))+...+(2001+(-2002))

S1=(-1)+...+(-1)

Có:2002:2=1001(số)

=>S1=(-1).1001

=>S1=-1001

24 tháng 7 2017

nhóm âm vào âm.dương vào dương

hoặc nhóm số đầu với số cuối số 2 với số kế cuối

8 tháng 4 2018

Ta có: 1/3+1/6+1/10+...+2/x*(x+1)

=2/6+2/12+2/20+...+2/x*(x+1)

=2/2*3+2/3*4+2/4*5+...+2/x*(x+1)

=2*(1/2*3+1/3*4+1/4*5+...+1/x*(x+1))

=2*(1/2-1/3+1/3-1/4+1/4-1/5+...+1/x-1/x+1)

=2*(1/2-1/x+1)=2000/2002

=>1/2-1/x+1=2000/2002:2

=>1/2-1/x+1=500/1001

=>1/x+1=1/2-500/1001

=>1/x+1=1/2002

=>x+1=2002

=>x=2002-1

=>x=2001 thuộc N

Vậy x=2001

*Mình ko biết ấn dấu phân số với dấu nhân ở đâu, bạn thông cảm nhé!

8 tháng 4 2018

uk mình cảm ơn bạn rất nhiều 

7 tháng 7 2020

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x.\left(x+1\right)}=\frac{2000}{2002}\)

\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x.\left(x+1\right)}\)=\(\frac{2000}{2002}\)

2.(\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x.\left(x+1\right)}\))=\(\frac{2000}{2002}\)

2.\(\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{2000}{2002}\)

2.(\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\)) = \(\frac{2000}{2002}\)

2.\(\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2000}{2002}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{1000}{2002}\)

\(\frac{1}{x+1}=\frac{1}{2}-\frac{1000}{2002}\)

\(\frac{1}{x+1}=\frac{1}{2002}\)

2002.1 = (x+1).1

2002 = x+1

x=2001 (T/M)

7 tháng 7 2020

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2000}{2002}\)

\(\Rightarrow\) \(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2000}{2002}\)

\(\Rightarrow\) \(2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2000}{2002}\)

\(\Rightarrow\) \(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2000}{2002}\)

\(\Rightarrow\) \(2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2000}{2002}\)

\(\Rightarrow\) \(\frac{1}{2}-\frac{1}{x+1}=\frac{500}{1001}\)

\(\Rightarrow\) \(\frac{1}{x+1}=\frac{1}{2002}\)

\(\Rightarrow\) \(x+1=2002\) \(\Rightarrow\) \(x=2001\)