K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6

Xét trường hợp d cắt hai cạnh đối BC và AD Gọi m là tổng các khoảng cách từ bốn đỉnh hình vuông đến D.

m =2(AA’ +BB’)

Gọi M, N lần lượt là trung điểm của AB và A’B’

Suy ra : m = 4MN do đó:

m lớn nhất Û MN lớn nhất

m nhỏ nhất Û MN nhỏ nhất

kẻ MH ^ OB . Chứng minh MN ≥MH Þ MN nhỏ nhất Û N ≡H Û d≡BD hoặc d ≡AC.


a: Xét tứ giác DEBF có

BE//DF

BE=DF

Do đó: DEBF là hình bình hành

b: ta có: DEBF là hình bình hành

nên Hai đường chéo DB và EF cắt nhau tại trung điểm của mỗi đường(1)

Ta có:ABCD là hình bình hành

nên hai đường chéo AC và BD cắt nhau tại trung điểm của mỗi đường(2)

Từ (1) và (2) suy ra BD,EF,AC đồng quy

3 tháng 12 2018

1a/IM vuông góc AB=>AMI=90 do

IN vuông góc AC=>ANI=90 do

△ABC vuông tại A=>BAC=90 do

=>góc AMI= gocANI= gocBAC= 90 do => tứ giác AMIN là hình chữ nhật

1b/Có I dx vs D qua N => ID là đường trung trực của AC=>AI=AD; IC=ID(1)

Trong △ABC có AI là đường trung tuyến ứng với cạnh huyền BC =>AI=1/2BC hay AI=IC(2)

Từ (1) va (2) => AI=IC=CD=DA => Tu giac AICD la hthoi

3 tháng 12 2018

2a/ Có M là TĐ AB và M là điểm đối xứng giữa E và H

=> AM=MB VA EM=MH hay AB giao voi EH tai TD M

=> Tg AEBH la hbh co AHB=90 do => Hbh AEBH la hcn

2b/Co AEBH la hcn=>EH=AB

+) Mà AB=AC=>EH=AC(1)

+) △ABC cân tại A có AH là đường cao đồng thời phân giác của góc BAC => góc BAH=góc HAC.

Co goc BAH=1/2 EAH ; góc AHE=1/2AHB

Ma goc EAH= goc AHB=>BAH=AHE hay goc HAC= goc AHE.

Mà 2 góc này ở vị trí SLT=> EH//AC(2)

Từ (1) va (2)=>tg AEHC la hbh

bài nãy dễ mk ms đk cô giáo chữa cho  ^~^

5 tháng 11 2016

a ) Ta có :

Góc BAD + ADC = 180o

=> \(\frac{1}{2}gocBAD+\frac{1}{2}gocADC=\frac{1}{2}.180^o\)

=> \(gocMAD+gocMDA=90^o\)

=> Xét \(\Delta MAD\)có \(gocMAD+gocMDA=90^o\Rightarrow gocAMD=90^o\)

=> Sử dụng góc kề bù ta suy ra \(gocAMD=gocAMF=gocDME=90^o\)

Xét \(\Delta AMD=\Delta AMF\left(g.c.g\right)\)

\(gocDAM=gocFAM\)( AE là phân giác góc A )

Chung cạnh AM

\(gocAMD=gocAMF\left(cmt\right)\)

=> \(\Delta AMD=\Delta AMF\left(g.c.g\right)\)

=> M là trung điểm DF

Tớ chỉ làm được tới đây

10 tháng 12 2016

Có bao giờ bạn tự hỏi mình đánh làm cái thế này