
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


đặt 1/2 ra
phần mẫu áp dụng công thức tính tổng còn lại tự làm nhoa bé


\(1\frac{2}{24}\times5\frac{2}{5}\times2\times3\frac{7}{9}\times2\)x2/17
\(=\frac{26}{24}\times\frac{27}{5}\times2\times\frac{34}{9}\times2\times\frac{2}{17}\)
\(=\frac{351}{60}\times2\times\frac{34}{9}\times2\times\frac{2}{17}\)
\(=\frac{351}{30}\times\frac{34}{9}\times2\times\frac{2}{17}\)
\(=\frac{5967}{135}\times2\times\frac{2}{17}\)
\(=\frac{11934}{135}\times\frac{2}{17}\)
\(=\frac{2652}{255}\)

a)\(\frac{2}{3}\cdot x+\frac{1}{4}=\frac{5}{6}\)
\(\frac{2}{3}\cdot x=\frac{5}{6}-\frac{1}{4}=\frac{7}{12}\)
\(x=\frac{7}{12}:\frac{2}{3}=\frac{7}{8}\)
b) \(\frac{7}{12}-\frac{5}{6}\cdot x=\frac{1}{4}:\frac{2}{3}\)
\(\frac{7}{12}-\frac{5}{6}\cdot x=\frac{3}{8}\)
\(\frac{5}{6}\cdot x=\frac{7}{12}-\frac{3}{8}=\frac{5}{24}\)
\(x=\frac{5}{24}:\frac{5}{6}=\frac{1}{4}\)
c) \(2\frac{1}{3}-\left(x+1\right)=\frac{5}{9}\)
\(\frac{7}{3}-\left(x+1\right)=\frac{5}{9}\)
\(x+1=\frac{7}{3}-\frac{5}{9}=\frac{16}{9}\)
\(x=\frac{16}{9}-1=\frac{7}{9}\)
d) \(\frac{2\cdot x+1}{15}=\frac{3}{5}\)
\(\left(2\cdot x+1\right):15=\frac{3}{5}\)
\(2\cdot x+1=\frac{3}{5}\cdot15=9\)
\(2\cdot x=9-1=8\)
\(x=8:2=4\)
a, 2/3 . x +1/4=5/6
2/3 . x=5/6-1/4
2/3 . x=10/12 -3/12
2/3 . x=7/12
x= 7/12 : 2/3
x=7/8
Vậy x=7/8

a)\(\frac{27}{5}\text{x}\frac{91}{12}\text{x}\frac{125}{9}\text{x}\frac{96}{13}=\frac{27}{9}\text{x}\frac{91}{13}\text{x}\frac{125}{5}\text{x}\frac{96}{12}=3\text{x}7\text{x}25\text{x}8\)
Đến đây tự tính nha !
b)\(\frac{2539}{35}\text{x}\frac{7}{90}+\frac{561}{35}\text{x}\frac{7}{90}=\frac{7}{90}\text{x}\left(\frac{2539}{35}+\frac{561}{35}\right)=\frac{7}{90}\text{x}\frac{3100}{35}=\frac{3100}{90}\text{x}\frac{7}{35}=\frac{310}{9}\text{x}\frac{1}{5}=\frac{62}{9}\)
`9/2 xx x -3/2 xx (x + 2)=24`
`9/2 xx x -24 =3/2 xx(x+2)`
`9/2 xx x - 24 = 3/2 xx x + 3/2 xx 2`
`9/2 xx x - 24 = 3/2 xx x+3`
`9/2 xx x - 3/2 xx x = 3+24`
`x xx (9/2 - 3/2)=27`
`x xx 6/2=27`
`x xx 3 = 27`
`x=27 : 3`
`x=9`
Vậy: `x=9`