K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5

có biết bđt a/b+c <1 thì a/b+c < \(\sqrt{\frac{a}{b+c}}\) chưa

Bài 2:

a: \(A=\frac17+\frac{1}{7^2}+\cdots+\frac{1}{7^{100}}\)

=>\(7A=1+\frac17+\cdots+\frac{1}{7^{99}}\)

=>\(7A-A=1+\frac17+\cdots+\frac{1}{7^{99}}-\frac17-\frac{1}{7^2}-\cdots-\frac{1}{7^{100}}\)

=>\(6A=1-\frac{1}{7^{100}}=\frac{7^{100}-1}{7^{100}}\)

=>\(A=\frac{7^{100}-1}{6\cdot7^{100}}\)

b: \(B=\frac53+\frac{5}{3^2}+\frac{5}{3^3}+\cdots+\frac{5}{3^{20}}\)

=>\(3B=5+\frac53+\frac{5}{3^2}+\cdots+\frac{5}{3^{19}}\)

=>\(3B-B=5+\frac53+\frac{5}{3^2}+\cdots+\frac{5}{3^{19}}-\frac53-\frac{5}{3^2}-\cdots-\frac{5}{3^{20}}\)

=>\(2B=5-\frac{5}{3^{20}}=\frac{5\cdot3^{20}-5}{3^{20}}\)

=>\(B=\frac{5\cdot3^{20}-5}{2\cdot3^{20}}\)

c: \(C=-\frac13+\frac{1}{3^2}-\frac{1}{3^3}+\frac{1}{3^4}-\cdots+\frac{1}{3^{50}}\)

=>\(3C=-1+\frac13-\frac{1}{3^2}+\frac{1}{3^3}-\cdots+\frac{1}{3^{49}}\)

=>\(3C+C=-1+\frac13-\frac{1}{3^2}+\frac{1}{3^3}-\cdots+\frac{1}{3^{49}}-\frac13+\frac{1}{3^2}-\frac{1}{3^3}+\frac{1}{3^4}-\cdots+\frac{1}{3^{50}}\)

=>\(4C=-1+\frac{1}{3^{50}}=\frac{-3^{50}+1}{3^{50}}\)

=>\(C=\frac{-3^{50}+1}{4\cdot3^{50}}\)

d: \(D=\left(-\frac17\right)^0+\left(-\frac17\right)^1+\left(-\frac17\right)^2+\cdots+\left(-\frac17\right)^{2017}\)

=>\(D=1-\frac17+\frac{1}{7^2}-\frac{1}{7^3}+\cdots-\frac{1}{7^{2017}}\)

=>\(7D=7-1+\frac17-\frac{1}{7^2}+\cdots-\frac{1}{7^{2016}}\)

=>\(7D+D=7-1+\frac17-\frac{1}{7^2}+\cdots-\frac{1}{7^{2016}}+1-\frac17+\frac{1}{7^2}-\frac{1}{7^3}+\cdots-\frac{1}{7^{2017}}\)

=>\(8D=7-\frac{1}{7^{2017}}=\frac{7^{2018}-1}{7^{2017}}\)

=>\(D=\frac{7^{2018}-1}{8\cdot7^{2017}}\)

e: \(E=\frac12+\frac{1}{2^3}+\frac{1}{2^5}+\cdots+\frac{1}{2^{99}}\)

=>\(4E=2+\frac12+\frac{1}{2^3}+\cdots+\frac{1}{2^{97}}\)

=>\(4E-E=2+\frac12+\frac{1}{2^3}+\cdots+\frac{1}{2^{97}}-\frac12-\frac{1}{2^3}-\frac{1}{2^5}-\cdots-\frac{1}{2^{99}}\)

=>\(3E=2-\frac{1}{2^{99}}=\frac{2^{100}-1}{2^{99}}\)

=>\(E=\frac{2^{100}-1}{3\cdot2^{99}}\)

Bài 1:

a: \(A=2\cdot4+4\cdot6+6\cdot8+\cdots+98\cdot100\)

\(=4\left(1\cdot2+2\cdot3+3\cdot4+\cdots+49\cdot50\right)\)

\(=4\left\lbrack1\left(1+1\right)+2\left(2+1\right)+3\left(3+1\right)+\cdots+49\left(49+1\right)\right\rbrack\)

\(=4\left\lbrack\left(1^2+2^2+\cdots+49^2\right)+\left(1+2+3+\cdots+49\right)\right\rbrack\)

\(=4\cdot\left\lbrack\frac{49\left(49+1\right)\left(2\cdot49+1\right)}{6}+\frac{49\cdot50}{2}\right\rbrack=4\cdot\left\lbrack\frac{49\cdot50\cdot99}{6}+49\cdot25\right\rbrack\)

\(=4\cdot\left\lbrack49\cdot25\cdot33+49\cdot25\right\rbrack=4\cdot49\cdot25\cdot34=100\cdot49\cdot34\)

=166600

b: \(B=1\cdot99+2\cdot98+\cdots+97\cdot3+98\cdot2+99\cdot1\)

\(=2\cdot\left(1\cdot99+2\cdot98+\cdots+48\cdot52+49\cdot51\right)+50^2\)

\(=2\cdot\left\lbrack1\left(100-1\right)+2\left(100-2\right)+\cdots+48\left(100-48\right)+49\left(100-49\right)\right\rbrack+50^2\)

\(=2\left\lbrack100\left(1+2+\cdots+49\right)-\left(1^2+2^2+\cdots+49^2\right)\right\rbrack\) +2500

\(=2\cdot\left\lbrack100\cdot\frac{49\cdot50}{2}-\frac{49\cdot\left(49+1\right)\left(2\cdot49+1\right)}{6}\right\rbrack+2500\)

\(=2\cdot\left\lbrack100\cdot49\cdot25-\frac{49\cdot50\cdot99}{6}\right\rbrack+2500\)

\(=2\cdot\left\lbrack100\cdot49\cdot25-49\cdot25\cdot33\right\rbrack+2500=2\cdot25\cdot49\left(100-33\right)+2500\)

\(=50\cdot49\cdot67+2500=166650\)

d: \(D=2^2+4^2+\cdots+98^2+100^2\)

\(=2^2\left(1^2+2^2+\cdots+49^2+50^2\right)\)

\(=4\cdot\frac{50\cdot\left(50+1\right)\left(2\cdot50+1\right)}{6}=4\cdot\frac{50\cdot51\cdot101}{6}\)

\(=4\cdot25\cdot17\cdot101=100\cdot17\cdot101=171700\)

e: \(E=1^2+3^2+5^2+\cdots+99^2\)
\(=\left(1^2+2^2+3^2+4^2+\cdots+99^2+100^2\right)-\left(2^2+4^2+\cdots+100^2\right)\)

\(=\frac{100\left(100+1\right)\left(2\cdot100+1\right)}{6}-2^2\left(1^2+2^2+\cdots+50^2\right)\)

\(=\frac{100\cdot101\cdot201}{6}-4\cdot\frac{50\left(50+1\right)\left(2\cdot50+1\right)}{6}\)

\(=50\cdot101\cdot67-4\cdot\frac{50\cdot51\cdot101}{6}\)

\(=50\cdot101\cdot67-4\cdot25\cdot17\cdot101=101\cdot50\left(67-2\cdot17\right)\)

\(=50\cdot101\cdot33=166650\)

f: \(F=1^2-2^2+3^2-4^2+\cdots+99^2-100^2\)

\(=\left(1-2\right)\left(1+2\right)+\left(3-4\right)\left(3+4\right)+\cdots+\left(99-100\right)\left(99+100\right)\)

=-(1+2+3+4+...+99+100)

\(=-100\cdot\frac{101}{2}=-50\cdot101=-5050\)

16 tháng 8

bạn chụp lại nhé cam chưa dc rõ nét

MT
16 tháng 8

ko bt

Bài 14:

\(A\left(x\right)+B\left(x\right)=5x^4-6x^3-3x^2-4\)

\(A\left(x\right)-B\left(x\right)=3x^4+7x^2+8x+2\)

Do đó: \(A\left(x\right)+B\left(x\right)+A\left(x\right)-B\left(x\right)=5x^4-6x^3-3x^2-4+3x^4+7x^2+8x+2\)

=>\(2\cdot A\left(x\right)=8x^4-6x^3+4x^2+8x-2\)

=>\(A\left(x\right)=4x^4-3x^3+2x^2+4x-1\)

Ta có: \(A\left(x\right)+B\left(x\right)=5x^4-6x^3-3x^2-4\)

=>\(B\left(x\right)=5x^4-6x^3-3x^2-4-4x^4+3x^3-2x^2-4x-1\)

=>\(B\left(x\right)=x^4-3x^3-5x^2-4x-5\)

Bài 13:

\(f\left(x\right)+g\left(x\right)=6x^4-3x^2-5\)

\(f\left(x\right)-g\left(x\right)=4x^4-6x^3+7x^2+8x-9\)

Do đó: \(f\left(x\right)+g\left(x\right)+f\left(x\right)-g\left(x\right)=6x^4-3x^2-5+4x^4-6x^3+7x^2+8x-9\)

=>\(2\cdot f\left(x\right)=10x^4-6x^3+4x^2+8x-14\)

=>\(f\left(x\right)=5x^4-3x^3+2x^2+4x-7\)

\(f\left(x\right)+g\left(x\right)=6x^4-3x^2-5\)

=>\(g\left(x\right)=6x^4-3x^2-5-5x^4+3x^3-2x^2-4x+7=x^4+3x^3-5x^2-4x+2\)

S
28 tháng 8

bài 2: a. ta có góc ADE = góc ABC (= 45 độ)

mà 2 góc này ở vị trí đồng vị

⇒ DE // BC

b. ta có góc FEC = góc ECB

mà 2 góc này ở vị trí so le trong

⇒ EF // BC

c. vì DE // BC và EF // BC nên DE ≡ EF

⇒ 3 điểm D,E,F thẳng hàng

bài 3:

a. ta có góc CHK = góc CAB = 90 độ

mà 2 góc này ở vị trí đồng vị

⇒ KH // AB

b. ta có góc IKB = góc KBA = 60 độ

mà 2 góc này ở vị trí so le trong

⇒ KI // AB

c. vì KH // AB và KI // AB nên KH ≡ KI

⇒ 3 điểm H,K,I thẳng hàng

27 tháng 8

giups em bai 2 và 3


NV
30 tháng 8

Đề bài có vẻ là sai rồi em (đề bài câu 5 đó)

NV
1 tháng 9

4.

Ta có: \(S=2^1+3^{4.1+1}+4^{4.2+1}+\cdots+2024^{4.2002+1}\)

Do tính chất lũy thừa bậc 4n+1 của 1 số có tận cùng giống số đó, nên S có cùng chữ số tận cùng với tổng:

\(S_1=2+3+4+\cdots+2024=\frac{2024.2025}{2}-1=2049299\)

Vậy S có tận cùng bằng 9

Bài 1:

1: xx'⊥AD

yy'⊥AD

Do đó: xx'//yy'

2:

Cách 1:

xx'//yy'

=>\(\hat{C_1}=\hat{x^{\prime}BC}\) (hai góc so le trong)

=>\(\hat{C_1}=70^0\)

Cách 2:

ta có: \(\hat{x^{\prime}BC}+\hat{xBC}=180^0\) (hai góc kề bù)

=>\(\hat{xBC}=180^0-70^0=110^0\)

Ta có: xx'//yy'

=>\(\hat{xBC}+\hat{C_1}=180^0\) (hai góc trong cùng phía)

=>\(\hat{C_1}=180^0-110^0=70^0\)

Bài 2:

a: \(\hat{ABC}=\hat{n^{\prime}CB}\left(=80^0\right)\)

mà hai góc này là hai góc ở vị trí so le trong

nên mm'//nn'

b: Cách 1:

ta có: \(\hat{xAm}+\hat{mAD}=180^0\) (hai góc kề bù)

=>\(\hat{mAD}=180^0-70^0=110^0\)

Ta có: AB//CD
=>\(\hat{mAD}=\hat{D_1}\) (hai góc so le trong)

=>\(\hat{D_1}=110^0\)

Cách 2:

Ta có: \(\hat{xAm}=\hat{BAD}\) (hai góc đối đỉnh)

\(\hat{xAm}=70^0\)

nên \(\hat{BAD}=70^0\)

Ta có: AB//CD

=>\(\hat{BAD}+\hat{D_1}=180^0\) (hai góc trong cùng phía)

=>\(\hat{D_1}=180^0-70^0=110^0\)