K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2

### Chứng minh: \( BMC = 90^\circ \) #### **Bước 1: Phân tích bài toán** - Tam giác \( ABC \) là tam giác độ nội tiếp đường tròn \( (O) \). - \( AD \) là đường kính của đường tròn \( (O) \), do đó \( D \) là chân đường cao từ \( A \) xuống \( BC \), nghĩa là \( \angle BDC = \angle CDB = 90^\circ \). - Điểm \( E, F \) lần lượt thuộc \( AB, AC \) sao cho \( BD = CF \) và \( CD = BE \). - \( M \) là trung điểm của \( EF \). - Cần chứng minh \( \angle BMC = 90^\circ \).

a: Xet (O) có

ΔACD nội tiếp

AD là đường kính

=>ΔACD vuông tại C

Xét ΔACD vuông tại C và ΔAHB vuông tại H có

góc ADC=góc ABH

=>ΔACD đồng dạng với ΔAHB

=>AC/AH=AD/AB và góc CAD=góc HAB

=>AC*AB=AD*AH và góc CAH=góc BAD

b: Xét tứ giác ABHE có

góc AHB=góc AEB=90 độ

=>ABHE là tứ giác nội tiếp

=>góc AHE=góc ABE

=>góc AHE+góc HAC=90 độ

=>HE vuông góc AC

Xét tứ giác AHFC có

góc AHC=góc AFC=90 độ

=>AHFC là tứ giác nội tiếp

=>góc HFA=góc HCA

=>góc HFA+góc BAD=90 độ

=>HF vuông góc AB

19 tháng 5 2020

giúp mình vs

24 tháng 1
  • B,C,E,F cùng thuộc một đường tròn.
  • EF song song với AB.
  • DE vuông góc với FK.

2:

Để phương trình có 2 nghiệm trái dấu thì m-2<0

=>m<2

29 tháng 3 2023

giải giúp e câu 1 ạ

a: góc ACD=1/2*180=90 độ

góc ECF+góc EBF=180 độ

=>EBFC nội tiếp

b: góc BEF=góc BCF

=>góc BEF=góc BCD=1/2*sđ cung BD

=góc BAD

=góc EBA

=>EF//AB