K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2

\(M=5+5^2+5^3+5^4+\cdots+5^{80}\)

Ta thấy , \(M\)\(5\)

Mặt khác , ta đặt \(B=5^2+5^3+5^4+\cdots+5^{80}\)\(5^2\)

Suy ra

\(M=5+B\) không chia hết cho \(5^2\)

\(5\) không chia hết cho \(5^2\)

\(\Rightarrow M\) không phải là một số chính phương

Kết luận : Vậy \(M\) không phải là một số chính phương

16 tháng 10 2017

biểu thứ là gì?

10 tháng 1 2018

M = 5 + 52 + 53 + ... + 52012.

    = ( 5+1 ).52 + ( 5+1 ). 53 +...+( 5+1 ). 5 80

    =6. 52 + 6. 53 + ...+ 6. 5 80

    =\(6\).52.53x...x5 80

Vậy M chia hết cho 6.

https://h.vn/hoi-dap/tim-kiem?q=Cho+bi%E1%BB%83u+th%E1%BB%A9c:+M+=+5+++52+++53+++...+++580.+Ch%E1%BB%A9ng+t%E1%BB%8F+r%E1%BA%B1ng:a.+M+chia+h%E1%BA%BFt+cho+6b.+M+kh%C3%B4ng+ph%E1%BA%A3i+l%C3%A0+s%E1%BB%91+ch%C3%ADnh+ph%C6%B0%C6%A1ng&id=83560

15 tháng 4 2019

Ta có: \(M=5+5^2+5^3+...+5^{80}\)

\(5M=5^2+5^3+5^4+...+5^{81}\)

\(5M-M=\left(5^2+5^3+5^4+...+5^{81}\right)-\left(5+5^2+5^3+...+5^{80}\right)\)

\(4M=5^{81}-5\)

\(M=\frac{5^{81}-5}{4}\)

\(\Rightarrow M\)ko phải là số chính phương

24 tháng 10 2023

Tui Ko biết làm

20 tháng 7 2020

5A=\(\frac{1}{5}+\frac{2}{5^2}...+\frac{n}{5^n}...+\frac{11}{5^{11}}\)

=>4A=5A-A=\(\frac{1}{5}+\frac{1}{5^2}...+\frac{1}{5^{11}}-\frac{11}{5^{12}}\)

=>20A=\(1+\frac{1}{5}+...+\frac{1}{5^{10}}-\frac{11}{5^{11}}\)

=>16A=20A-4A=\(1-\frac{1}{5^{11}}+\frac{11}{5^{12}}-\frac{11}{5^{11}}\)

Mà \(1-\frac{1}{5^{11}}< 1\),\(\frac{11}{5^{12}}-\frac{11}{5^{11}}< 0\)

=>16A<1

Do đó: A<1/16(đpcm)

22 tháng 2 2023

cho địt t trả lời

 

22 tháng 9 2018

Ta có: A= 5+52+53+....+5100

A= ( 5+52)+( 53+54)+.......+(599+5100)

A= 5.(1+5)+ 53.(1+5)+....+599.(1+5)

A= 5.6 + 53.6 + .....+599.6

A= 6.( 5+53+.....+599)

A= 6.( 5+53+.....+599) chia hết cho 1, cho chính nó và cho 6 nên A là hợp số

22 tháng 9 2018

a, hop so vi chac chan co uoc =5,1,chinh no,........vv

b, ko

29 tháng 8 2020

Bài làm:

Xét: \(\frac{1}{5^2}>\frac{1}{5.6}\) ; \(\frac{1}{6^2}>\frac{1}{6.7}\) ; ... ; \(\frac{1}{100^2}>\frac{1}{100.101}\)

=> \(A>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}\)

\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}\)

\(=\frac{1}{5}-\frac{1}{101}=\frac{96}{505}>\frac{1}{6}\) (1)

Lại có: \(\frac{1}{5^2}< \frac{1}{4.5}\) ; \(\frac{1}{6^2}< \frac{1}{5.6}\) ; ... ; \(\frac{1}{100^2}< \frac{1}{99.100}\)

=> \(A< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{4}-\frac{1}{100}< \frac{1}{4}\) (2)

Từ (1) và (2) => \(\frac{1}{6}< A< \frac{1}{4}\)

8 tháng 7 2018

1) \(P=\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...+\frac{11}{5^{12}}\)

\(5P=\frac{1}{5^1}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{11}{5^{11}}\)

\(5P-P=\frac{1}{5^1}+\left(\frac{2}{5^2}-\frac{1}{5^2}\right)+\left(\frac{3}{5^3}-\frac{2}{5^3}\right)+...+\left(\frac{11}{5^{11}}-\frac{10}{5^{11}}\right)-\frac{11}{5^{12}}\)

\(4P=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{11}}-\frac{11}{5^{12}}\)

Đặt \(A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{11}}\)

\(5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{10}}\)

\(5A-A=1+\frac{1}{5}-\frac{1}{5}+\frac{1}{5^2}-\frac{1}{5^2}+...+\frac{1}{5^{10}}-\frac{1}{5^{11}}\)

\(4A=1-\frac{1}{5^{11}}\Rightarrow A=\frac{1-\frac{1}{5^{11}}}{4}\)

\(4P=\frac{1-\frac{1}{5^{11}}}{4}-\frac{11}{5^{12}}=\frac{1-\frac{1}{5^{11}}}{16}-\frac{11}{5^{12}\cdot4}< \frac{1}{16}\)

18 tháng 12 2016

a là hợp số

a ko phải là số chính phương