Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(B=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(B=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)
\(B=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
\(B< \frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\)
\(B< \frac{50}{60}\Leftrightarrow B< \frac{5}{6}\)
a) \(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}< 1\)
\(\Rightarrow A< 1\)
b) \(B=\frac{1}{3}+\left(\frac{1}{3}\right)^2+...+\left(\frac{1}{3}\right)^{100}\)
\(\Rightarrow3B=1+\frac{1}{3}+...+\left(\frac{1}{3}\right)^{99}\)
\(\Rightarrow3B-B=1-\left(\frac{1}{3}\right)^{100}\)
\(\Rightarrow2B=1-\left(\frac{1}{3}\right)^{100}< 1\)
\(\Rightarrow2B< 1\)
\(\Rightarrow B< \frac{1}{2}\)
= 1 . 1/2 + 1/2 . 1/3 + ... + 1/99 . 1/100
= 1 . 1/100
= 1/100
SAI thi mai len bao sai cho nao nha !!!!
\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.....\frac{10^2}{10.11}\)
\(=\frac{1.1}{1.2}.\frac{2.2}{2.3}.\frac{3.3}{3.4}......\frac{10.10}{10.11}\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{10}{11}\)
\(=\frac{1.2.3.....10}{2.3.4.....11}=\frac{1}{11}\)
a)\(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{99}{100!}\)
=\(\frac{2}{2!}-\frac{1}{2!}+\frac{3}{3!}-\frac{1}{3!}+\frac{4}{4!}-\frac{1}{4!}+...+\frac{100}{100!}-\frac{1}{100!}\)
=\(1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{99!}-\frac{1}{100!}\)
=\(1-\frac{1}{100!}< 1\)
\(\Rightarrow\)\(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{99}{100!}< 1\)
b)\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}\)
=\(\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+\frac{3.4}{4!}-\frac{1}{4!}+...+\frac{99.100}{100!}-\frac{1}{100!}\)
=\(\left(\frac{1.2}{2!}+\frac{2.3}{3!}+\frac{3.4}{4!}+...+\frac{99.100}{100!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}\right)\)=\(1+1-\frac{1}{99}-\frac{1}{100}\)
=\(2-\frac{1}{99}-\frac{1}{100}< 2\)
\(\Rightarrow\)\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}< 2\)
a) \(2^x+2^{x+1}2^{x+2}=112\)
\(2^x.\left(1+2+4\right)=112\)
\(2^x=112:7=16\)
Mà \(2^4=16\)
\(\Rightarrow2^x=2^4\)
Vậy x = 4
b) \(\left|x+\frac{1}{1.2}\right|+\left|x+\frac{1}{2.3}\right|+...\left|x+\frac{1}{99.100}\right|=100x\)
Vì \(\left|x+\frac{1}{1.2}\right|\ge0;\left|x+\frac{1}{2.3}\right|\ge0;....\left|x+\frac{1}{99.100}\right|\ge0\)
\(\Rightarrow\left(x+x+...x\right)+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)=100x\)
\(\Rightarrow100x+\left(1-\frac{1}{100}\right)=100x\)
\(\Rightarrow\frac{99}{100}=x\)
Để tính giá trị của biểu thức: A = 1/(1×2) + 1/(2×3) + 1/(3×4) + ... + 1/(99×100) Ta có thể rút gọn mỗi phân thức trong dãy này như sau: 1/(n(n+1)) = 1/n - 1/(n+1) Thay vào chuỗi tổng, ta có: A = (1/1 - 1/2) + (1/2 - 1/3) + (1/3 - 1/4) + ... + (1/99 - 1/100) Khi viết ra đầy đủ, ta thấy các phần tử trung gian sẽ bị rút gọn. Cụ thể: A = 1 - 1/100 Vậy, giá trị cuối cùng của A là: A = 1 - 1/100 = 99/100 Kết quả là A = 99/100.
cảm ơn