Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2023 mũ 2024+2024 mũ 2025+2025 mũ 2026
Xét 2023 mũ 2024
\(^{2023^{2024}}\)=\(^{2023^{4.501}}\)=(\(^{2023^4}\))\(^{^{501}}\)
Ta có:\(^{2023^4}\)tận cùng là 1
=>2023 mũ 4 tất cả mũ 501 tận cùng là 1
Xét 2024 mũ 2025
2024 mũ 2025=2024 mũ 2 .1012+1=2024 mũ 2.1012 nhân 2024=(2024 mũ 2)mũ 1012.2024
Ta có:2024 mũ 2 tận cùng là 6
=>(2024 mũ 2) tất cả mũ 1012 tận cùng là 6
=>(2024 mũ 2) tất cả mũ 1012 nhân 2024 tận cùng là4
Xét 2025 mũ 2026
2025 mũ 2026
5 mũ bao nhiêu thì chữ số tận cùng vẫn là 5
=>2025 mũ 2026 tận cùng là 5
Vậy tổng của các chữ số tận cùng là:1+4+5=10 chia hết cho 10
=> Tổng của 2023 mũ 2024+2024 mũ 2025+2025 mũ 2026 chia hết cho 10
Đây là bài áp dụng tính chất tìm chữ số tận cùng
Chúc bn học tốt
\(2023^{2024}+2024^{2025}+2025^{2026}\equiv\left(-1\right)^{1012}+\left(-1\right)^{2025}+0\equiv0\)(mod 5)
-> chia hết cho 5
Dễ dàng nhận thấy \(2023^{2024}+2025^{2026}\) là số chẵn mà \(2024^{2025}\)cũng là số chẵn nên chia hết cho 2
Do (2,5) = 1 nên chia hết cho 10
a) 1763 + (-2) < 1763 (cộng số âm)
b) (-105) + 5 > -105; (cộng số dương)
c) (-29) + (-11) < -29 (cộng số âm)
a,2^30=(2^3)^10,3^20=(3^2)^10
2^30=8^10,3^20=9^10
vì 8<9=>8^10<9^10
=>2^30<3^20
b,9999=(99^101)^20
vì 20<2020=>9999^10>99^20
c(0,8)^3=(0.4^2)^3
vì 4<6 =>(0,4)^4<(0,8)^3
chúc em học tốt nhé ^-^
a) 230 và 320
230= 10 chữ số 23 \(\hept{ }\)2.2.2.2.2.2.2.2.2..........2= 23.10
( 23 ) 10= 8 10
320 = 10 chữ số 32 \(\hept{ }\)3.3.3.3........3= 32.10
( 32) 10= 9 10
Vì 8 < 9 nên 230 < 320.
b) 9920 và 999910
9920= 10 chữ số 992 \(\hept{ }\)99.99.99.99.....99= 992.10
(992)10= 9801 10
Lưu ý :vì số 99 20 được kết quả là 9801 10 mà 999910 cùng số mũ nên ta không cần phải tính nữa !
Vì 9801 < 9999 nên 9920 < 999910
Câu c cũng rất dễ bạn dựa vào cách mình làm ở câu a và b để giải câu c nha !
Thấy đúng mà dễ hiểu thì k cho mình nha !
a. \(\left(-9\right).\left(-8\right)\) với \(0\)
\(\rightarrow72.....0\)
\(\rightarrow72>0\)
b. \(\left(-12\right).4\) với \(\left(-2\right).\left(-3\right)\)
\(\rightarrow\left(-48\right).......6\)
\(\rightarrow\left(-48\right)< 6\)
c. \(\left(+20\right).\left(+8\right)\) với \(\left(-19\right).\left(-9\right)\)
\(\rightarrow160......171\)
\(\rightarrow160< 171\)
Bài 1:
Ta có:
\(\left(\frac{1}{10}\right)^{15}=\left(\frac{1}{5}\right)^{3.5}=\left(\frac{1}{125}\right)^5\)
\(\left(\frac{3}{10}\right)^{20}=\left(\frac{3}{10}\right)^{4.5}=\left(\frac{81}{10000}\right)^5\)
Lại có:
\(\frac{1}{125}=\frac{80}{10000}< \frac{81}{10000}\Rightarrow\left(\frac{1}{125}\right)^5< \left(\frac{81}{10000}\right)^5\)
\(\Rightarrow\left(\frac{1}{10}\right)^{15}< \left(\frac{3}{10}\right)^{20}\)
Bài 2:
Ta có:
\(A=\frac{13^{15}+1}{13^{16}+1}\Rightarrow13A=\frac{13^{16}+13}{13^{16}+1}=1+\frac{12}{13^{16}+1}\)
\(B=\frac{13^{16}+1}{13^{17}+1}\Rightarrow13B=\frac{13^{17}+13}{13^{17}+1}=1+\frac{12}{13^{17}+1}\)
Mà \(\frac{12}{13^{16}+1}>\frac{12}{13^{17}+1}\)
\(\Rightarrow1+\frac{12}{13^{16}+1}>1+\frac{12}{13^{17}+1}\)
\(\Rightarrow13A>13B\Rightarrow A>B\)
a) \(\left(-3\right)\cdot1574\cdot\left(-7\right)\cdot\left(-11\right)\cdot\left(-10\right)>0\)
b) \(25-\left(-37\right)\cdot\left(-29\right)\cdot\left(-154\right)\cdot2>0\)
a) Vì tích (-3).1574.(-7).(-11).(-10) có bốn thừa số âm nên tích đó là một số dương.
Do vậy: (-3).1574.(-7).(-11).(-10) > 0
b) Ta có: 25 – (-37).(-29).(-154).2 = - (37.29.154.2) (vì tích có số lẻ thừa số âm)
Suy ra: 25−(−37).(−29).(−154).225−(−37).(−29).(−154).2
= 25−[−(37.29.154.2)]25−[−(37.29.154.2)]
= 25 + (37.29.154.2)>0
Vậy 25 – (-37).(-29).(-154).2 >0
2100 và 20249
ta có: 20249 = 29.10 = 290
=> 100 > 90 => 2100 > 290 => 2100 > 20249
Ko chắc nx :v
\(A=\left(20^{2024}+11^{2024}\right)^{2025}\)
\(A=\left(20^{2024}+11^{2024}\right)^{2024}.\left(20^{2024}+11^{2024}\right)^1\)
\(B=\left(20^{2025}+11^{2025}\right)^{2024}\)
\(B=[\left(20^{2024}+11^{2024}\right).\left(20+11\right)]^{2024}\)
\(B=\left(20^{2024}+11^{2024}\right)^{2024}.\left(20+11\right)^{2024}\)
\(B=\left(20^{2024}+11^{2024}\right)^{2024}.\left(20^{2024}+11^{2024}\right)^1\)
\(Vì\) \(\left(20^{2024}+11^{2024}\right)^{2024}.\left(20^{2024}+11^{2024}\right)^1=\left(20^{2024}+11^{2024}\right)^{2024}.\left(20^{2024}+11^{2024}\right)^1\) \(\Rightarrow A=B\)
\(Vậy\) \(A=B\tođpcm.\)