Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
T = 500^2 - 499^2 + 498^2 - 497^2 +...+2^2 -1^2
= 2( 500^2 + 498^2 + 496^2 +...+2^2 ) - ( 1^2 + 2^2 +3^2 + 4^2 +...+498^2 + 499^2)
= 2.4 ( 1^2 + 2^2 + 3^2 + ...+249^2 + 250^2) - ( 1^2 + 2^2 +3^2 + 4^2 +...+498^2 + 499^2)
\(=8.\frac{250\left(250+1\right)\left(2.250+1\right)}{6}-\frac{500\left(500+1\right)\left(2.500+1\right)}{6}\)
\(=\frac{500\left(500+1\right)}{6}\left(4.\left(250+1\right)-\left(2.500+1\right)\right)\)
= 250 ( 500 + 1)= 125250
Tính tổng :
a) 12+322+523+....+2n−12n12+322+523+....+2n−12n
b) 12−22+32−42+....+(−1)n−1.n\(^2\)
Giải
a) HD: Đặt tổng là S\(_n\) và tính 2S\(_n\)
ĐS : S\(_n\)=3−\(\frac{2n+3}{2^n}\)
b) HD: n\(^2\)- (n+1)\(^2\)= -2n-1
Ta có: 1\(^2\)-2\(^2\)= -3; 3\(^2\) - 4\(^2\)= -7;....
Ta có: u\(_1\)= -3, d= -4 và tính S\(_n\) trong từng trường hợp n chẵn, lẻ.
Sn=3−2n+32nb) HD : b) HD : n2−(n+1)2=−2n−1n2−(n+1)2=−2n−1 Ta có 12−22=−3;32−42=−7;...12−22=−3;32−42=−7;... b) HD :
Từ \(2\overrightarrow{ỊJ}=\overrightarrow{AB}+\overrightarrow{CD}\) suy ra
\(AB^2+BC^2+CD^2+DA^2=AC^2+BD^2+4IJ^2\Leftrightarrow CB^2+DA^2=CA^2+DB^2+2AB^2.CD^2\)
\(\Leftrightarrow2.\overrightarrow{AB}\overrightarrow{CD}=AD^2-AC^2+BC^2-BD^2\)
\(2^2+5^2+8^2+...+\left(3n-1\right)^2=\dfrac{n\left(6n^2+3n-1\right)}{2}\left(1\right)\)
Với n=1
\(VT=4;VP=4\)
(1) đúng với n=1
Giả sử (1) đúng với n=\(k\ge1\)
\(2^2+5^2+8^2+...+\left(3k-1\right)^2=\dfrac{k\left(6k^2+3k-1\right)}{2}\)
Ta cần phải chứng minh (1) đúng với n=k+1
\(\Leftrightarrow2^2+5^2+8^2+...+\left(3k-1\right)^2+\left[3\left(k+1\right)-1\right]^2=\dfrac{\left(k+1\right)\left[6\left(k+1\right)^2+3\left(k+1\right)-1\right]}{2}\)
\(\Leftrightarrow2^2+5^2+8^2+...+\left(3k-1\right)^2+\left(3k+2\right)^2=\dfrac{\left(k+1\right)\left(6k^2+15k+8\right)}{2}\)
\(VT=\dfrac{k\left(6k^2+3k-1\right)}{2}+\left(3k+2\right)^2=\dfrac{6k^3+3k^2-k+18k^2+24k+8}{2}\)
\(=\dfrac{6k^3+21k^2+23k+8}{2}=\dfrac{6k^3+15k^2+8k+6k^2+15k+8}{2}\)
\(=\dfrac{k\left(6k^2+15k+8\right)+\left(6k^2+15k+8\right)}{2}=\dfrac{\left(6k^2+15k+8\right)\left(k+1\right)}{2}\)
\(\Leftrightarrow VT=VP\)
suy ra đpcm
Lời giải khác:
Theo BĐT AM-GM:
\(\text{VT}=\sum \frac{\sqrt{2(b^2+c^2)-a^2}}{a}\geq \sum \frac{\sqrt{(b+c)^2-a^2}}{a}=\sum \frac{\sqrt{a+b+c}.\sqrt{b+c-a}}{a}\)
\(=\sum \frac{\sqrt{a+b+c}.(b+c-a)}{\sqrt{a^2(b+c-a)}}\)
Theo BĐT AM-GM:
$a^2(b+c-a)\leq \left(\frac{a+b+c}{3}\right)^3$
\(\Rightarrow \text{VT}\geq 3\sqrt{3}\sum \frac{\sqrt{a+b+c}(b+c-a)}{\sqrt{(a+b+c)^3}}=3\sqrt{3}.\sum \frac{b+c-a}{a+b+c}=3\sqrt{3}\)
Ta có đpcm.
Dấu "=" xảy ra khi $a=b=c$
Chuẩn hóa \(a+b+c=3\)
Do a;b;c là độ dài 3 cạnh của 1 tam giác nên ta cũng suy ra \(0< a;b;c< \frac{3}{2}\)
Đặt vế trái là P, ta có:
\(P=\sum\frac{\sqrt{2\left(b^2+c^2\right)-a^2}}{a}\ge\sum\frac{\sqrt{\left(b+c\right)^2-a^2}}{a}=\sum\frac{\sqrt{\left(a+b+c\right)\left(b+c-a\right)}}{a}=\sqrt{3}\left(\frac{\sqrt{3-2a}}{a}+\frac{\sqrt{3-2b}}{b}+\frac{\sqrt{3-2c}}{c}\right)\)
Ta có đánh giá: \(\frac{\sqrt{3-2a}}{a}\ge3-2a\) với mọi \(a\in\left(0;\frac{3}{2}\right)\)
Thật vậy, BĐT \(\Leftrightarrow a\sqrt{3-2a}\le1\)
\(\Leftrightarrow1-a^2\left(3-2a\right)\ge0\)
\(\Leftrightarrow\left(a-1\right)^2\left(2a+1\right)\ge0\) (luôn đúng)
Tương tự \(\frac{\sqrt{3-2b}}{b}\ge3-2b\) ; \(\frac{\sqrt{3-2c}}{c}\ge3-2c\)
\(\Rightarrow P\ge\sqrt{3}\left[9-2\left(a+b+c\right)\right]=3\sqrt{3}\) (đpcm)
:v bn ns v là bn bik hết là dạng gì rr mà lm ko đc á :))
Để tính giá trị của biểu thức 24×2342×32, ta thực hiện theo các bước sau:
Bước 1: Viết lại các căn số
Bước 2: Nhân các lũy thừa
Khi nhân các lũy thừa cùng cơ số, ta cộng các số mũ:
214×213=214+13241×231=241+31Bước 3: Tính tổng các phân số
Để cộng 1441 và 1331, ta phải quy đồng mẫu số. Mẫu số chung của 4 và 3 là 12, vậy ta có:
14=312,13=41241=123,31=124Vậy:
14+13=312+412=71241+31=123+124=127Bước 4: Kết quả
Vậy:
214×213=2712241×231=2127Do đó, kết quả của 24×2342×32 là 27122127.