Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Diện tích hình thoi ABCD là:
\(S_{ABCD}=\dfrac{AC.BD}{2}=\dfrac{8.6}{2}=24\left(cm^2\right)\)
diện tích hình thoi là: (đổi 5m= 50 dm)
\(\dfrac{50\cdot20}{2}\) = 500(dm)
diện tích hình thoi ABCD là:
\(\dfrac{8\cdot6}{2}\) =24(cm)
Diện tích hình thoi ABCD là: 8 . 15 : 2= 60 m2
Diện tích nửa hình tam giác ABC là: 60 : 2= 30 m2
Độ dài AH là: 30 : 6 . 2= 10cm
Để chứng minh a. ON//(SAB) và b. (OMN)//(SCD), chúng ta có thể sử dụng các định lý và quy tắc trong hình học không gian.
a. Để chứng minh ON//(SAB), ta có thể sử dụng định lý về đường thẳng song song trong hình học không gian. Theo định lý này, nếu có hai đường thẳng cắt một mặt phẳng và các đường thẳng này đều song song với một đường thẳng thứ ba trong mặt phẳng đó, thì hai đường thẳng đó cũng song song với nhau. Áp dụng định lý này, ta có thể chứng minh ON//(SAB) bằng cách chứng minh rằng ON và AB đều song song với một đường thẳng thứ ba trong mặt phẳng chứa chóp S.ABCD.
b. Để chứng minh (OMN)//(SCD), ta cũng có thể sử dụng định lý về đường thẳng song song trong hình học không gian. Tương tự như trường hợp trước, ta cần chứng minh rằng OM và CD đều song song với một đường thẳng thứ ba trong mặt phẳng chứa chóp S.ABCD.
Tuy nhiên, để chứng minh chính xác các phần a và b, cần có thêm thông tin về các góc và độ dài trong hình chóp S.ABCD.
Câu 1
từ bn vẽ hình nhé
AB=OB-OA
AB=6-3
AB=3
=> A có là trung điểm của đoạn thẳngOB vi
+ A,O,B thuộc tia Ox
+A nằm giữa O và B
+OA=AB
các câu sau làm tương tự
Gọi AH là cc tương ứng với BC
Áp dụng HTL: \(AH=\dfrac{AB\cdot AC}{BC}=4,8\left(cm\right)\)
Sao lại có: AB = 5cm rồi AB = 6cm nữa hả bạn, bạn sửa lại đề nhé