\(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2024

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2022^2}+\dfrac{1}{2023^2}\)

\(A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2021.2022}+\dfrac{1}{2022.2023}\)

\(A< \dfrac{2-1}{1.2}+\dfrac{3-2}{2.3}+\dfrac{4-3}{3.4}+...+\dfrac{2022-2021}{2021.2022}+\dfrac{2023-2022}{2022.2023}\)

\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2021}-\dfrac{1}{2022}+\dfrac{1}{2022}-\dfrac{1}{2023}\)

\(A< 1-\dfrac{1}{2023}\)

\(A< \dfrac{2022}{2023}\)

Mà \(\dfrac{2022}{2023}< 1\Rightarrow A< 1\)

 

18 tháng 11 2018

\(A=\dfrac{1}{2^2}+\dfrac{1}{2^4}+\dfrac{1}{2^6}+...+\dfrac{1}{2^{100}}\)

\(2^2A=2^2\left(\dfrac{1}{2^2}+\dfrac{1}{2^4}+\dfrac{1}{2^6}+...+\dfrac{1}{2^{100}}\right)\)

\(4A=1+\dfrac{1}{2^2}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{98}}\)

\(4A-A=\left(1+\dfrac{1}{2^2}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{98}}\right)-\left(\dfrac{1}{2^2}+\dfrac{1}{2^4}+\dfrac{1}{2^6}+...+\dfrac{1}{2^{100}}\right)\)\(3A=1-\dfrac{1}{2^{100}}\)

\(A=\dfrac{1-\dfrac{1}{2^{100}}}{3}\)

\(A=\dfrac{1}{3}-\dfrac{\dfrac{1}{2^{100}}}{3}< \dfrac{1}{3}\)

Vậy \(A< \dfrac{1}{3}\)

3 tháng 3 2019

\(S=\dfrac{1}{2^2}-\dfrac{1}{2^4}+\dfrac{1}{2^6}-......+\dfrac{1}{2^{4n-2}}-\dfrac{1}{2^{4n}}+......+\dfrac{1}{2^{2002}}-\dfrac{1}{2^{2004}}\Rightarrow4S=1-\dfrac{1}{2^2}+\dfrac{1}{2^4}-\dfrac{1}{2^6}+......-\dfrac{1}{2^{4n-2}}+\dfrac{1}{2^{4n}}+......-\dfrac{1}{2^{2002}}\Rightarrow4S+S=5S=1-\dfrac{1}{2^{2004}}< 1\Rightarrow S< 0,2\left(\text{đpcm}\right)\)

5 tháng 10 2017

\(a)3\dfrac{1}{2}.\dfrac{4}{49}-\left[2,\left(4\right):2\dfrac{5}{11}\right]:\left(\dfrac{-42}{5}\right)\)

\(=\dfrac{7}{2}.\dfrac{4}{49}-\dfrac{88}{27}:\left(\dfrac{-42}{7}\right)\)

\(=\dfrac{2}{7}-\dfrac{-220}{567}\)

\(=\dfrac{382}{567}\)

các phần con lại dễ nên bn tự lm đi nhé mk bn lắm

Chúc bạn học tốt!

Bài 1:

a: \(=\dfrac{1}{2}-\dfrac{7}{13}-\dfrac{1}{3}-\dfrac{6}{13}+\dfrac{1}{3}+\dfrac{4}{3}=\dfrac{4}{3}-1+\dfrac{1}{2}=\dfrac{1}{3}+\dfrac{1}{2}=\dfrac{5}{6}\)

b: \(=\dfrac{3}{4}+\dfrac{2}{5}+\dfrac{1}{9}-1-\dfrac{2}{5}+\dfrac{5}{4}=2-1+\dfrac{1}{9}=\dfrac{10}{9}\)

c: \(=\left(\dfrac{-3}{2}\cdot\dfrac{4}{3}\right)\cdot\dfrac{-9}{2}-\dfrac{1}{2}=9-\dfrac{1}{2}=8.5\)

Y
9 tháng 2 2019

+ \(5N=1+\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{98}}\)

\(N=\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{98}}+\dfrac{1}{5^{99}}\)

\(\Rightarrow4N=5N-N=1-\dfrac{1}{5^{99}}\)

\(\Rightarrow N=\dfrac{1}{4}-\dfrac{1}{4\cdot5^{99}}< \dfrac{1}{4}\) ( đpcm )

18 tháng 6 2018

Giải:

a) \(\dfrac{1}{3}x+\dfrac{1}{5}-\dfrac{1}{2}x=1\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{1}{5}-\dfrac{1}{6}x=\dfrac{5}{4}\)

\(\Leftrightarrow\dfrac{1}{6}x=\dfrac{-21}{20}\)

\(\Leftrightarrow x=\dfrac{-63}{10}\)

Vậy ...

b) \(\dfrac{3}{2}\left(x+\dfrac{1}{2}\right)-\dfrac{1}{8}x=\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{3}{2}x+\dfrac{3}{4}-\dfrac{1}{8}x=\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{11}{8}x=\dfrac{-1}{2}\)

\(\Leftrightarrow x=\dfrac{-4}{11}\)

Vậy ...

Các câu sau làm tương tự câu b)

27 tháng 6 2017

\(A=\left(\dfrac{1}{2}-\dfrac{7}{13}-\dfrac{1}{3}\right)+\left(\dfrac{-6}{13}+\dfrac{1}{2}+1\dfrac{1}{3}\right)\)

\(A=\dfrac{1}{2}-\dfrac{7}{13}-\dfrac{1}{3}-\dfrac{6}{13}+\dfrac{1}{2}+\dfrac{4}{3}\)

\(A=\left(\dfrac{1}{2}+\dfrac{1}{2}\right)-\left(\dfrac{7}{13}+\dfrac{6}{13}\right)+\left(\dfrac{4}{3}-\dfrac{1}{3}\right)\)

\(A=1-1+1=1\)

\(B=\left(-1\dfrac{1}{2}:\dfrac{3}{-4}\right).\left(-4\dfrac{1}{2}\right)-\dfrac{1}{4}\)

\(B=\dfrac{-3}{2}:\dfrac{3}{-4}.\dfrac{-9}{2}-\dfrac{1}{4}\)

\(B=2.\dfrac{-9}{2}-\dfrac{1}{4}\)

\(=-9-\dfrac{1}{4}=\dfrac{-37}{4}\)

27 tháng 6 2017

\(a,A=\left(\dfrac{1}{2}-\dfrac{7}{13}-\dfrac{1}{3}\right)+\left(-\dfrac{6}{13}+\dfrac{1}{2}+1\dfrac{1}{3}\right)\)

\(A=\dfrac{1}{2}-\dfrac{7}{13}-\dfrac{1}{3}+\dfrac{-6}{13}+\dfrac{1}{2}+\dfrac{4}{3}\)

\(A=\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+\left(-\dfrac{7}{13}-\dfrac{6}{13}\right)+\left(-\dfrac{1}{3}+\dfrac{4}{3}\right)\)

\(A=-1+1=0\)

\(b,B=\left(-1\dfrac{1}{2}:\dfrac{3}{-4}\right)\left(-4\dfrac{1}{2}\right)-\dfrac{1}{4}\)

\(B=\left(-\dfrac{3}{2}.\dfrac{-4}{3}\right).\dfrac{-9}{2}-\dfrac{1}{4}\)

\(B=8.\dfrac{-9}{2}-\dfrac{1}{4}\)

\(B=-36-\dfrac{1}{4}\)

B = \(-\dfrac{145}{4}\)

15 tháng 10 2018

cảm ơn bạn rất nhiều

28 tháng 12 2018

4/ \(\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{4}\\\dfrac{y}{5}=\dfrac{z}{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=\dfrac{y}{20}\\\dfrac{y}{20}=\dfrac{z}{24}\end{matrix}\right.\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{24}=k\) (đặt k)

Suy ra \(x=15k;y=20k;z=24k\)

Thay vào,ta có:

\(M=\dfrac{2.15k+3.20k+4.24k}{3.15k+4.20k+5.24k}=\dfrac{186k}{245k}=\dfrac{186}{245}\)

28 tháng 12 2018

3. \(b^2=ac\Rightarrow\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a^2+ac}{ac+c^2}=\dfrac{a\left(a+c\right)}{c\left(a+c\right)}=\dfrac{a}{c}^{\left(đpcm\right)}\)

28 tháng 1 2018

\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+........+\dfrac{1}{100^2}\)

Ta có :

\(\dfrac{1}{5^2}< \dfrac{1}{4.5}\)

\(\dfrac{1}{6^2}< \dfrac{1}{5.6}\)

...................

\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)

\(\Leftrightarrow\dfrac{1}{5^2}+\dfrac{1}{6^2}+....+\dfrac{1}{100^2}< \dfrac{1}{4.5}+\dfrac{1}{5.6}+.......+\dfrac{1}{99.100}=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+......+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{1}{4}-\dfrac{1}{100}=\dfrac{6}{25}\)

\(\dfrac{1}{6}< \dfrac{5}{26}< \dfrac{1}{4}\)

\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+.........+\dfrac{1}{100^2}< \dfrac{6}{25}\)

\(\Leftrightarrow\dfrac{1}{6}< \dfrac{1}{5^2}+\dfrac{1}{6^2}+.......+\dfrac{1}{100^2}< \dfrac{1}{4}\left(đpcm\right)\) \(\left(1\right)\)