K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2024

Để tìm số tự nhiên nn thỏa mãn các điều kiện:

  1. Chia hết cho 25 và 19.

  2. Có 10 ước.

Bước 1: Điều kiện chia hết

nn phải chia hết cho 25×19=47525 \times 19 = 475.

Bước 2: Điều kiện có 10 ước

Một số có 10 ước dạng n=p1⋅q4n = p^1 \cdot q^4.

Với p=19p = 19, q=5q = 5:

n=191⋅54=19⋅625=11875n = 19^1 \cdot 5^4 = 19 \cdot 625 = 11875

Vậy nn1187511875.

27 tháng 10 2016

ai vậy ta                                                                                                                                                                                            Tung day

25 tháng 8 2017

Gọi d là UCLN của 2n+1 và 3n+1

Ta có :

\(2n+1⋮d\)

\(3n+1⋮d\)

\(\Rightarrow3\left(2n+1\right)⋮d\)

\(\Rightarrow2\left(3n+1\right)⋮d\)

\(\Rightarrow\left(6n+3\right)-\left(6n+2\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

9 tháng 10 2016

d, D=3n+5=3(n+2) -1
để D chia hết cho n+2 thì 1 phải chia hết cho n+2
=> n+2 thuộc ước của 1 =>n=-1 (KTM) ;n=-3 (KTM) vậy ko có giá trị nào thỏa mãn

9 tháng 10 2016

a, A=3n+10 = 3(n+3) +1
 Để A chia hết cho (n+3) thì 1 phải chia hết cho n+3
=> n+3 thuộc ước của 1 => n=-2 hoặc n=-4 
Mà n là số tự nhiên nên không có giá trị nào thỏa mãn

1 tháng 8 2015

1. Gọi số đó là n. Ta có n-1 chia hết cho 2; 3; 4; 5; 6

Để n nhỏ nhất thì n-1 nhỏ nhất. Vậy ta đi tìm BCNN của các số trên là 60

n-1 chia hết cho 60 hay n-1 = 60k <=> n = 60k + 1 (*)

n chia hết cho 7 => 60k + 1 chia hết cho 7

<=> 60k ≡ -1 (mod 7) <=> 56k + 4k ≡ -1 (mod 7) <=> 4k ≡ -1 (mod 7)

<=> 4k ≡ 6 (mod 7) <=> 2k ≡ 3 (mod 7) <=> 2k ≡ 10 (mod 7) <=> k ≡ 5 (mod 7)

Vậy k nhỏ nhất là 5

Thế vào (*): n = 301 thỏa mãn

2. a) n = 25k - 1 chia hết cho 9

<=> 25k ≡ 1 (mod 9) <=> 27k - 2k ≡ 1 (mod 9) <=> -2k ≡ 1 (mod 9) <=> -2k ≡ 10 (mod 9)

<=> -k ≡ 5 (mod 9) <=> k ≡ 4 (mod 9)

Để n nhỏ nhất thì k nhỏ nhất, vậy k là 4

Thế vào trên được n = 99 thỏa mãn

b) ... -3k ≡ 1 (mod 21) <=> -21k ≡ 7 (mod 21) => Vô lý vì -21k luôn chia hết cho 21

Vậy không có n thỏa mãn

c) Đặt n = 9k

9k ≡ -1 (mod 25) <=> 9k ≡ 24 (mod 25) <=> 3k ≡ 8 (mod 25) <=> 3k ≡ 33 (mod 25)

<=> k ≡ 11 (mod 25) => k = 25a + 11 (1)

9k ≡ -2 (mod 4) <=> 9k ≡ 2 (mod 4) <=> k ≡ 2 (mod 4) => k = 4b + 2 (2)

Từ (1) và (2) => 25a + 11 = 4b + 2 <=> 25a + 9 = 4b => 25a + 9 ≡ 0 (mod 4)

<=> a + 1 ≡ 0 (mod 4) (*)

Lưu ý rằng n tự nhiên nhỏ nhất => k tự nhiên nhỏ nhất => a tự nhiên nhỏ nhất. Vậy a thỏa mãn (*) là a = 3 => n = 774 thỏa mãn

Mình không được dạy dạng toán này nên không biết cách trình bày, cách giải cũng là mình "tự chế" nên nhiều chỗ hơi "lạ" một chút, không biết đúng không nữa :D

13 tháng 10 2015

1. n = 301

2.a) n = 99

b) không có

c) n = 774

8 tháng 10 2016

mình biết cách làm

đó mai mình 

chỉ cho nhé vì

mình cũng làm bài

này nhiều rùi

16 tháng 10 2016

Bài này mik cũng làm nhiều rùi nè

20 tháng 12 2016

Câu 4:
Giải:

Ta có:

\(n+1⋮2n-3\)

\(\Rightarrow2\left(n+1\right)⋮2n-3\)

\(\Rightarrow2n+2⋮2n-3\)

\(\Rightarrow\left(2n-3\right)+5⋮2n-3\)

\(\Rightarrow5⋮2n-3\)

\(\Rightarrow2n-3\in\left\{1;5\right\}\)

+) \(2n-3=1\Rightarrow n=2\)

+) \(2n-3=5\Rightarrow n=4\)

Vậy \(n\in\left\{2;4\right\}\)

*Lưu ý: còn trường hợp n = 1 nữa nhưng khi đó tỉ 2n - 3 = -1. Bạn lấy số đó thì thay vào.

20 tháng 12 2016

1)Ta có:[a,b].(a,b)=a.b

120.(a,b)=2400

(a,b)=20

Đặt a=20k,b=20m(ƯCLN(k,m)=1,\(k,m\in N\))

\(\Rightarrow20k\cdot20m=2400\)

\(400\cdot k\cdot m=2400\)

\(k\cdot m=6\)

Mà ƯCLN(k,m)=1,\(k,m\in N\)

Ta có bảng giá trị sau:

k2316
m3261
a406020120
b604012020

Mà a,b là SNT\(\Rightarrow\)a,b không tìm được

2)Mình nghĩ đề đúng là cho 2a+3b chia hết cho 15

Ta có:\(2a+3b⋮15\Rightarrow3\left(2a+3b\right)⋮15\Rightarrow6a+9b⋮15\)

Ta có:\(9a+6b+6a+9b=15a+15b=15\left(a+b\right)⋮15\)

\(6a+9b⋮15\Rightarrow9a+6b⋮15\left(đpcm\right)\)