Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:\(A=\frac{17^{15}+3}{17^{15}-2}=\frac{17^{15}-2+5}{17^{15}-2}=\frac{17^{15}-2}{17^{15}-2}+\frac{5}{17^{15}-2}=1+\frac{5}{17^{15}-2}\)
\(B=\frac{17^{15}}{17^{15}-5}=\frac{17^{15}-5+5}{17^{15}-5}=\frac{17^{15}-5}{17^{15}-5}+\frac{5}{17^{15}-5}=1+\frac{5}{17^{15}-5}\)
vì 1715-2>1715-5
=>\(\frac{5}{17^{15}-2}<\frac{5}{17^{15}-5}\)
=>A<B
M = \(15.\left(\frac{1}{15.16}+\frac{1}{16.17}+...+\frac{1}{19.20}\right)\)
= \(15.\left(\frac{1}{15}-\frac{1}{16}+\frac{1}{16}-\frac{1}{17}+...+\frac{1}{19}-\frac{1}{20}\right)\)
= \(15.\left(\frac{1}{15}-\frac{1}{20}\right)\)
= \(15.\frac{1}{60}\)= \(\frac{1}{4}\)\(< \frac{1}{3}\)
(=) \(M< \frac{1}{3}\)\(\left(đpcm\right)\)
Ta có: \(M=\frac{15}{15.16}+\frac{15}{16.17}+\frac{15}{17.18}+\frac{15}{18.19}+\frac{15}{19.20}\)
\(\Rightarrow M=15.\left(\frac{1}{15.16}+\frac{1}{16.17}+\frac{1}{17.18}+\frac{1}{18.19}+\frac{1}{19.20}\right)\)
\(\Rightarrow M=15.\left(\frac{1}{15}-\frac{1}{16}+\frac{1}{16}-\frac{1}{17}+\frac{1}{17}-\frac{1}{18}+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\right)\)
\(\Rightarrow M=15.\left(\frac{1}{15}-\frac{1}{20}\right)\)
\(\Rightarrow M=15.\frac{1}{60}=\frac{1}{4}\)
Ta thấy: \(\frac{1}{4}< \frac{1}{3}\Rightarrow M< \frac{1}{3}\)
Vậy \(M< \frac{1}{3}\)
Chúc bạn học tốt!
(217 + 172).(915 - 315).(24 - 42)
= (217 + 172).(915 - 315).(16 - 16)
= (217 + 172).(915 - 315).0
= 0
(-15)+(-3)-17
=-15-3-17
=-(15+3+17)
=-(18+17)
=-35