K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2024

a) Chứng minh tam giác AMB bằng tam giác ANC:
Ta có:
- AB = AC (đề bài cho)
- BM vuông góc với AC tại M (điều kiện đề bài cho)
- CN vuông góc với AB tại N (điều kiện đề bài cho)
- AM = AN (đường cao của tam giác đều có độ dài bằng nhau)
- Góc AMB = Góc ANC (góc vuông)
Vậy, theo định lý góc - cạnh - góc (GCG), ta có tam giác AMB bằng tam giác ANC.

b) Chứng minh tam giác BCN bằng tam giác CMB:
Ta có:
- AB = AC (đề bài cho)
- BM vuông góc với AC tại M (điều kiện đề bài cho)
- CN vuông góc với AB tại N (điều kiện đề bài cho)
- BM = CN (đường cao của tam giác đều có độ dài bằng nhau)
- Góc BCN = Góc CMB (góc vuông)
Vậy, theo định lý góc - cạnh - góc (GCG), ta có tam giác BCN bằng tam giác CMB. CHÚC BẠN HỌC TỐT!!!

a) Sửa đề: ΔAMB=ΔANC

Xét ΔAMB vuông tại M và ΔANC vuông tại N có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAM}\) chung

Do đó: ΔAMB=ΔANC(cạnh huyền-góc nhọn)

b) Xét ΔBMC vuông tại M và ΔCNB vuông tại N có 

CB chung

\(\widehat{BCM}=\widehat{CBN}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔBMC=ΔCNB(cạnh huyền-góc nhọn)

c) Ta có: ΔBMC=ΔCNB(cmt)

nên \(\widehat{MBC}=\widehat{NCB}\)(hai góc tương ứng)

hay \(\widehat{IBC}=\widehat{ICB}\)

Xét ΔIBC có \(\widehat{IBC}=\widehat{ICB}\)(cmt)

nên ΔIBC cân tại I(Định lí đảo của tam giác cân)

\(\Leftrightarrow IB=IC\)(hai cạnh bên)

Ta có: ΔANC=ΔAMB(cmt)

nên AN=AM(hai cạnh tương ứng)

Xét ΔAMI và ΔANI có

AM=AN(cmt)

AI chung

MI=NI(cmt)

Do đó: ΔAMI=ΔANI(c-c-c)

7 tháng 5 2018

a) xét tam giác AMBvà tam giác AMC có:

am là cạnh chung 

ab=ac 

mb=mc(vì m là trung điểm của bc )

suy ra ; tam giác AMB=AMC(c.c.c)

b) 

22 tháng 11 2018

A B C M 1 2 1 2

1.Xét tam giác AMB và tam giác AMC có: 

\(AB=AC\);\(AM:\) (cạnh chung)

Do đó \(\Delta AMB=\Delta AMC\)(cạnh huyền-cạnh góc vuông)

2. ​\(\Delta AMB=\Delta AMC\Rightarrow\widehat{A_1}=\widehat{A_2}\) (hai góc tương ứng) 

Suy ra AM là tia phân giác của góc A

3. Chứng minh tương tự.

13 tháng 1 2023

hình thì bạn tự vẽ nha !

a) xét ΔAMB và ΔAMC, ta có : 

AB = AC (gt)

MB = MC (vì M là trung điểm của cạnh BC)

AM là cạnh chung

⇒ ΔAMB = ΔAMC (c.c.c)

b) vì ΔAMB = ΔAMC nên ⇒ \(\widehat{AMB}=\widehat{AMC}\) (2 góc tương ứng)

ta có : \(\widehat{AMB}+\widehat{AMC}=180^0\) (kề bù)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)

⇒ AM vuông góc với BC

c) vì ΔAMB = ΔAMC nên ⇒ \(\widehat{BAM}=\widehat{CAM}\) (2 góc tương ứng)

xét ΔAHM và ΔAKM, ta có : 

AM là cạnh chung

\(\widehat{HAM}=\widehat{KAM}\) (cmt)

⇒ ΔAHM = ΔAKM (cạnh góc vuông và góc nhọn kề)

⇒ HA = KA (2 cạnh tương ứng)

HB không thể nào bằng AC được nha, có thể đề sai 

d) vì HA = KA nên ⇒ ΔHAK là tam giác cân

trong ΔAHK, ta có : \(\widehat{AHK}=\left(180^0-\widehat{A}\right)\div2\)   (1)

trong ΔABC, ta có : \(\widehat{ABC}=\left(180^0-\widehat{A}\right)\div2\)    (2)

từ (1) và (2) ta suy ra \(\widehat{AHK}=\widehat{ABC}\), mà 2 góc này ở vị trí đồng vị, => HK // BC

16 tháng 1 2023

A B C M GT ∆ABC(AB = AC) M là trung điểm của BC H MH∟AB tại H MK∟AC tại∟K KL a)∆AMB = ∆AMC b)AM∟BC c)HA = KA; HB = KC d)HK song song với BC K X X

Chứng minh:

a) Xét hai ∆AMB và ∆AMC có:

       AB = AC (GT)

       MB = MB (M là trung điểm của BC)

       AM là cạnh chung

Vậy ∆AMB = ∆AMC(c.c.c)

b) Có ∆AMB = ∆AMC(theo a)

⇒ Góc AMB = Góc AMC(2 góc tương ứng)

mà góc AMB + AMC = 180° (2 góc kề bù)

⇒ Góc AMB = Góc AMC = 90°

⇒ AM ∟ BC

c) ΔABC có:

       AB = AC(GT)

⇒ ΔABC cân tại A

⇒ Góc B = Góc C

Có MHAB tại H ⇒ Góc MHB = 90°

Có MKAC tại K ⇒ Góc MKC = 90°

Xét hai ΔBHM và ΔCKM có:

       Góc B = Góc C(ΔABC cân tại A)

       MB = MC(M là trung điểm của BC)

       Góc MHB = Góc MKC = 90°

Vậy ΔBHM = ΔCKM(g.c.g)

⇒ HB = KC(2 cạnh tương ứng)

Có HB + HA = AB

⇒ HA = AB - HB

Có KC + KA = AC

⇒ KA = AC - KC

mà AB = AC(GT)

       HB = KC(2 cạnh tương ứng)

⇒ HA = KA (2 cạnh tương ứng)