Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sqrt{625}-\dfrac{1}{\sqrt{5}}=25-\dfrac{1}{\sqrt{5}}\)
\(B=\sqrt{576}-\dfrac{1}{\sqrt{6}}+1=24-\dfrac{1}{\sqrt{6}}+1=25-\dfrac{1}{\sqrt{6}}.\)
Vì \(\sqrt{5}< \sqrt{6}\) nên \(\dfrac{1}{\sqrt{5}}>\dfrac{1}{\sqrt{6}}.\)
Từ (1), (2) và (3) suy ra \(A< B.\)
1) Theo định nghĩa về căn bậc 2 số học thì đáp án là \(\sqrt{5^2}; \sqrt{(-5)^2}\)
2) Tập $Q$ là tập những số thực biểu diễn được dưới dạng \(\frac{a}{b}\) (a,b tự nhiên, $b$ khác $0$), tập $I$ là tập những số thực không biểu diễn được dạng như trên.
\(0,15=\frac{3}{20}\in\mathbb{Q}\) , A sai.
$\sqrt{2}$ là một số vô tỉ (tính chất quen thuộc), B sai.
$C$ hiển nhiên đúng, theo định nghĩa.
Do đó áp án đúng là C.
3)
a) \(-\sqrt{x}=(-7)^2=49\)
\(\Rightarrow \sqrt{x}=-49\) (vô lý, vì căn bậc 2 số học của một số là một số không âm , trong khi đó $-49$ âm)
Do đó pt vô nghiệm.
b) \(\sqrt{x+1}+2=0\Rightarrow \sqrt{x+1}=-2<0\)
Điều trên hoàn toàn vô lý do căn bậc 2 số học là một số không âm
Vậy pt vô nghiệm.
c) \(5\sqrt{x+1}+2=0\Rightarrow \sqrt{x+1}=\frac{-2}{5}<0\)
Điều trên hoàn toàn vô lý do căn bậc 2 số học là một số không âm
Vậy pt vô nghiệm.
d) \(\sqrt{2x-1}=29\Rightarrow 2x-1=29^2=841\Rightarrow x=\frac{841+1}{2}=421\)
e)\(x^2=0\Rightarrow x=\pm \sqrt{0}=0\)
g) \((x-1)^2=1\frac{9}{16}=\frac{25}{16}\)
\(\Rightarrow x-1=\pm \sqrt{\frac{25}{16}}=\pm \frac{5}{4}\)
\(\Rightarrow \left[\begin{matrix} x=\frac{9}{4}\\ x=\frac{-1}{4}\end{matrix}\right.\)
h) \(\sqrt{3-2x}=1\Rightarrow 3-2x=1^2=1\Rightarrow x=\frac{3-1}{2}=1\)
f) \(\sqrt{x}-x=0\Rightarrow \sqrt{x}=x\Rightarrow x=x^2\)
\(\Rightarrow x(1-x)=0\Rightarrow \left[\begin{matrix} x=0\\ x=1\end{matrix}\right.\)
Ta Đặt :
A = 4 + \(\sqrt{33}\)
=> A2 = \(\left(4+\sqrt{33}\right).\left(4+\sqrt{33}\right)\)
=> A2 = 4 . 4 + 4 . \(\sqrt{33}\)+ \(\sqrt{33}\). 4 + \(\sqrt{33}\). \(\sqrt{33}\)
=> A2 = 16 + 2.4\(\sqrt{33}\)+33
=> A2 = 49 + 8\(\sqrt{33}\)
Đặt B = \(\sqrt{29}+\sqrt{14}\)
=> B2 = \(\left(\sqrt{29}+\sqrt{14}\right).\left(\sqrt{29}+\sqrt{14}\right)\)
=> B2 = \(\sqrt{29}\). \(\sqrt{29}\)+ \(\sqrt{29}\).\(\sqrt{14}\)+ \(\sqrt{14}\). \(\sqrt{29}\)+ \(\sqrt{14}\).\(\sqrt{14}\)
=> B2 = 29 + 2\(\sqrt{14}\).\(\sqrt{29}\)+ 14
=> B2 = 43 + 2\(\sqrt{14}\).\(\sqrt{29}\)
Ta có :
A = M + I
B = N + O
Đặt I = 49
Đặt O = 43
Vì 49 > 43 => I > O(1)
Đặt M = 2 . 4\(\sqrt{33}\)
=> M2 = 4 . 16 . 33 = 2112
Đặt N = 2\(\sqrt{14}\).\(\sqrt{29}\)
=> N2 = 4 . 14 . 29 = 1624
Vì M2 > N2
=> M > N (2)
Từ (1) và (2)
=> A > B
MỆT QUÁ ! CHO MÌNH TÍCH NHA MẤT KHOẢNG TIẾNG ĐỒNG HỒ
ĐÂY LÀ CÁCH LÀM BÀI CỦA LỚP 7 MÌNH MỚI ĐƯỢC HỌC ĐẤY !
CÁCH LỚP 7 NÊN NÓ DÀI NHA BẠN ! THÔNG CẢM
Bài1:
Ta có:
a)\(\sqrt{\dfrac{3^2}{5^2}}=\sqrt{\dfrac{9}{25}}=\dfrac{3}{5}\)
b)\(\dfrac{\sqrt{3^2}+\sqrt{42^2}}{\sqrt{5^2}+\sqrt{70^2}}=\dfrac{\sqrt{9}+\sqrt{1764}}{\sqrt{25}+\sqrt{4900}}=\dfrac{3+42}{5+70}=\dfrac{45}{75}=\dfrac{3}{5}\)
c)\(\dfrac{\sqrt{3^2}-\sqrt{8^2}}{\sqrt{5^2}-\sqrt{8^2}}=\dfrac{\sqrt{9}-\sqrt{64}}{\sqrt{25}-\sqrt{64}}=\dfrac{3-8}{5-8}=\dfrac{-5}{-3}=\dfrac{5}{3}\)
Từ đó, suy ra: \(\dfrac{3}{5}=\sqrt{\dfrac{3^2}{5^2}}=\dfrac{\sqrt{3^2}+\sqrt{42^2}}{\sqrt{5^2}+\sqrt{70^2}}\)
Bài 2:
Không có đề bài à bạn?
Bài 3:
a)\(\sqrt{x}-1=4\)
\(\Rightarrow\sqrt{x}=5\)
\(\Rightarrow x=\sqrt{25}\)
\(\Rightarrow x=5\)
b)Vd:\(\sqrt{x^4}=\sqrt{x.x.x.x}=x^2\Rightarrow\sqrt{x^4}=x^2\)
Từ Vd suy ra:\(\sqrt{\left(x-1\right)^4}=16\)
\(\Rightarrow\left(x-1\right)^2=16\)
\(\Rightarrow\left(x-1\right)^2=4^2\)
\(\Rightarrow x-1=4\)
\(\Rightarrow x=5\)
1/√29+5<1/√29+√5
Dễ!
Ta có; \(5>\sqrt{5}\)
=>\(5+\sqrt{29}>\sqrt{5}+\sqrt{29}\)
=>\(\dfrac{1}{5+\sqrt{29}}< \dfrac{1}{\sqrt{5}+\sqrt{29}}\)