Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
K là giao điểm của 3 đường trung tuyến. CN là đường trung tuyến kẻ từ C nên AN=BN
a) Xét ΔABM và ΔFCM có
AM=FM(gt)
\(\widehat{AMB}=\widehat{FMC}\)(hai góc đối đỉnh)
BM=CM(M là trung điểm của BC)
Do đó: ΔABM=ΔFCM(c-g-c)
b) Xét ΔBMF và ΔCMA có
BM=CM(M là trung điểm của BC)
\(\widehat{BMF}=\widehat{CMA}\)(hai góc đối đỉnh)
FM=AM(gt)
Do đó: ΔBMF=ΔCMA(c-g-c)
nên \(\widehat{FBM}=\widehat{ACM}\)(hai góc tương ứng)
mà \(\widehat{FBM}\) và \(\widehat{ACM}\) là hai góc ở vị trí so le trong
nên BF//AC(Dấu hiệu nhận biết hai đường thẳng song song)
Ta có: ΔABM=ΔFCM(cmt)
nên \(\widehat{ABM}=\widehat{FCM}\)(hai góc tương ứng)
mà \(\widehat{ABM}\) và \(\widehat{FCM}\) là hai góc ở vị trí so le trong
nên AB//CF(Dấu hiệu nhận biết hai đường thẳng song song)
a) Xét \(\Delta MAB\)và \(\Delta MDC\)có:
MA = MD (gt)
\(\widehat{BMA}=\widehat{CMD}\)(2 góc đối đỉnh)
MB = MC (gt)
\(\Rightarrow\Delta MAB=\Delta MDC\left(c-g-c\right)\)
\(\Rightarrow AB=DC\)(2 cạnh tương ứng)
\(\widehat{BAM}=\widehat{CDM}\)(2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong
\(\Rightarrow AB//CD\)
b) Xét \(\Delta ACM\)và \(\Delta DBM\)có:
MA = MD (gt)
\(\widehat{AMC}=\widehat{BMD}\)(2 góc đối đỉnh)
MB = MC (gt)
\(\Rightarrow\Delta ACM=\Delta DBM\left(c-g-c\right)\)
\(\Rightarrow AC=DB\)(2 cạnh tương ứng)
Xét \(\Delta BAC\)và \(\Delta CDB\)có:
AB = DC (cmt)
AC = DB (cmt)
BC là cạnh chung
\(\Rightarrow\Delta BAC=\Delta CDB\left(c-c-c\right)\)
\(\Rightarrow\widehat{BAC}=\widehat{CDB}\)(2 góc tương ứng)
c) Bn tự lm nhá!! Phần này mk chưa nghĩ ra. Tốn chất xám lắm!!!!!
MK KO GỬI ĐC ẢNH CÁI HÌNH LÊN THÔNG CẢM
A)
xét \(\Delta AMB\) VÀ \(\Delta DMC\) CÓ:
\(MB=MC\)(DO M LÀ TRUNG ĐIỂM CỦA BC)
\(AM=MD\left(GT\right)\)
\(\widehat{AMB}=\widehat{DMC}\)(2 GÓC ĐỐI ĐỈNH)
\(\Rightarrow\)\(\Delta AMB=\Delta DMC\left(c.g.c\right)\left(đpcm\right)\)
đợi chút,mk làm phần b,c sau
B A C M N \
Do Tam giác ABC cân tại A => AB =AC => 1/2AB=1/2AC=> AM=BM=AN=CN
Xét tam giác CMB và tam giác BNC có :
BC chung
MB=NC
Góc MBC = góc NCB( tam giác ABC cân tại A)
=> tam giác CMB=tam giác BNC
Không chắc lắm :v
A B C M D
Dễ thấy AC = CD (do đoạn thẳngCA và CD có chung một hình chiếu và đường vuông góc AM = MD - Quan hệ giữa đường vuông góc và đường xiên,đường xiên và hình chiếu)
Xét \(\Delta MAB\) và \(\Delta MDC\) có:
AB = CD (vì AB = AC mà AC = CD)
BM = MC (gt)
AM = MD (gt)
Do đó \(\Delta MAB=\Delta MDC\) (c.c.c) (1)
Mà \(\widehat{AMB}=\widehat{DMC}\) (đối đỉnh) (2)
Từ (1) và (2) suy ra AB // CD
À không nhầm mẹ rồi. Vẫn dùng cách hình hồi nãy nha! (không nhầm hoàn toàn,chỉ là nhầm một số chỗ,với lại không rõ ràng)
Dễ thấy AB = CD (Quan hệ đường vuông góc và đường xiên,đường xiên và hình chiếu) (1)
* Chứng minh \(\Delta MAB=\Delta MDC\)
Xét \(\Delta MAB\) và \(\Delta MDC\) có:
AB = CD - Từ (1)
MA = MD (gt)
MB = MC (gt)
Do đó \(\Delta MAB=\Delta MDC\) (c.c.c)
Suy ra \(\widehat{MAB}=\widehat{MDC}\) (hai góc tương ứng)
Mà hai góc này ở vị trí so le trong,do đó \(AB//CD^{\left(đpcm\right)}\)
Xét \(\Delta ABM\) và \(\Delta DCM\) có
AM = DM (gt)
\(\widehat{AMB}=\widehat{DMC}\) (đối đỉnh_
BM = CM (gt)
=> \(\Delta ABM\) = \(\Delta DCM\) (c.g.c)
=> AB = DC ( 2 cạnh t/ứ)
Xét \(\Delta ACM\) và \(\Delta DBM\) có
AM = DM (gt)
\(\widehat{AMC}=\widehat{BMD}\) (đối đỉnh)
CM = BM (gt)
=> \(\Delta ACM\) = \(\Delta DBM\) (c.g.c)
=> AC = DB ( 2 cạnh t/ứ)
a, vì 2 góc CMD và AMB là 2 góc đối đỉnh nên 2 góc này = nhau
xét tam giác ABM và tam giác DCM có
AM=MD(GT)
góc AMB=CMD(chứng minh trên)
BM=MC ( vì M là trung điểm của BC)
=>tam giác ABM= tam giác DCM(c-g-c)
a: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
Suy ra: AB//CD
1
Xét ∆ABM và ∆CDM có:
AM=DM (gt)
Góc AMB = góc CMD (đối đỉnh)
BM=CM (Vì M là trung điểm BC)
=>∆ABM=∆CDM(c.g.c)
=> AB=CD(đpcm)