K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2024

1: Xét ΔAOI vuông tại A có \(tanAIO=\dfrac{AO}{AI}=\dfrac{R}{R\sqrt{3}}=\dfrac{1}{\sqrt{3}}\)

2: \(tanAIO=\dfrac{1}{\sqrt{3}}\)

=>\(\widehat{AIO}=30^0\)

Xét ΔOAI và ΔOBI có

OA=OB

AI=BI

OI chung

Do đó: ΔOAI=ΔOBI

=>\(\widehat{OAI}=\widehat{OBI}\)

=>\(\widehat{OBI}=90^0\)

=>IB là tiếp tuyến của (O)

ΔOAI=ΔOBI

=>\(\widehat{AIO}=\widehat{BIO}\)

=>IO là phân giác của góc AIB

=>\(\widehat{AIB}=2\cdot\widehat{AIO}=60^0\)

Giải giúp mình các bài này với ạ!1) Từ điểm A nằm ngoài đường tròn tâm O, vẽ tiếp tuyến AB (B là tiếp điểm). Lấy điểm C thuộc đường tròn tâm (O) khác điểm B sao cho AB = ACa. CM : Tam giác OAB = tam giác OACb. CM : AC là tiếp tuyến của đường tròn tâm Oc. Gọi I là giao điểm của OA và BC. Tính AB biết bán kính (R) = 5cm, BC = 8cm2) Lấy 2 điểm A và B thuộc đường tròn tâm O (3 điểm A, B, O không...
Đọc tiếp

Giải giúp mình các bài này với ạ!

1) Từ điểm A nằm ngoài đường tròn tâm O, vẽ tiếp tuyến AB (B là tiếp điểm). Lấy điểm C thuộc đường tròn tâm (O) khác điểm B sao cho AB = AC
a. CM : Tam giác OAB = tam giác OAC
b. CM : AC là tiếp tuyến của đường tròn tâm O
c. Gọi I là giao điểm của OA và BC. Tính AB biết bán kính (R) = 5cm, BC = 8cm

2) Lấy 2 điểm A và B thuộc đường tròn tâm O (3 điểm A, B, O không thẳng hàng). Tiếp tuyến của O tại A cắt tia phân giác của góc AOB tại C.
a. So sánh tam giác OAC và tam giác OBC.
b. CM : BC là tiếp tuyến của đường tròn tâm O

3) Cho đường tròn tâm O, bán kính R. Lấy điểm A cách O một khoảng = 2R. Từ A vẽ 2 tiếp tuyến AB, AC (B,C là tiếp điểm). OA cắt đường tròn tâm O tại I. Đường thẳng qua O và vuông góc với OB cắt AC tại K.
a. CM : OK // AB
b. CM : tam giác OAK là tam giác cân
c. CM : KI là tiếp tuyến của đường tròn tâm O.

0
2 tháng 6 2017

A I B O K C

\(\Delta AIO;BIO\)Có \(\hept{\begin{cases}0A=0B=R\\IA=IB=\sqrt{3}R\\OI\left(chung\right)\end{cases}}\)\(\Rightarrow\widehat{IAO}=\widehat{IBO}=90^0\)

  1. xét tam giác vuông \(\Delta AIO\)\(tan\widehat{AIO}=\frac{AO}{AI}=\frac{R}{\sqrt{3}R}=\frac{1}{\sqrt{3}}=tan30^0\Leftrightarrow\widehat{AI0}=30^0\)
  2. vì \(\Delta IAO=\Delta IB0\)\(\Rightarrow\widehat{AIO}=\widehat{BIO}\Rightarrow\widehat{AIB}=2.\widehat{AIO}=2.30^0=60^0\)
  3. Xét tam giác vuông \(\Delta KIB\) Có \(tan\widehat{KIB}=\frac{KB}{IB}\Rightarrow KB=tan\widehat{KIB}.IB=R\sqrt{3}.tan60^0=R\sqrt{3}\sqrt{3}=3R\)

\(Sin\widehat{KIB}=\frac{BK}{IK}\Rightarrow IK=\frac{BK}{Sin\widehat{KIB}}=\frac{3R}{Sin60^0}\frac{3R}{\frac{\sqrt{3}}{2}}=2\sqrt{3}.R\)

22 tháng 3 2020

1, 

Tam giác ABC có CA=CB và ACB=90 => ACB vuông cân

Giúp mình với . ( giải chi tiết và cái hình luôn) Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H làgiao điểm của BM và CN.a) Tính số đo các góc BMC và BNC.b) Chứng minh AH vuông góc BC.c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho gócMAB = 60độ . Kẻ dây MN vuông góc với AB...
Đọc tiếp

Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.

3
9 tháng 10 2017

Hình học lớp 9

21 tháng 4 2017

Tự giải đi em

10 tháng 4 2020

*Không vẽ được hình, bạn thông cảm*

Gọi O' là điểm trên IO sao cho \(IO'=\frac{1}{3}IO\)

Xét \(\Delta\)IAO có: \(\frac{IA'}{IA}=\frac{IO'}{IO}\left(=\frac{1}{3}\right)\Rightarrow O'A'//OA\) (định lý Talet đảo)

Do đó: \(\frac{O'A'}{OA}=\frac{IA'}{IA}=\frac{1}{3}\Rightarrow O'A'=\frac{1}{3}R\)

Cmtt ta được: \(O'B'=\frac{1}{3}R;O'C'=\frac{1}{3}R;O'D'=\frac{1}{3}R\)

a) Xét ΔDAB có

DO là đường trung tuyến ứng với cạnh AB(O là trung điểm của AO)

DO là đường cao ứng với cạnh AB(gt)

Do đó: ΔDAB cân tại D(Định lí tam giác cân)

Suy ra: \(DA=DB\)(hai cạnh bên)

hay \(sđ\stackrel\frown{DA}=sđ\stackrel\frown{DB}\)

Xét (O) có 

\(\widehat{AID}\) là góc nội tiếp chắn cung AD

\(\widehat{BID}\) là góc nội tiếp chắn cung BD

mà \(sđ\stackrel\frown{DA}=sđ\stackrel\frown{DB}\)(cmt)

nên \(\widehat{AID}=\widehat{BID}\)

hay ID là tia phân giác của \(\widehat{AIB}\)(đpcm)

b) Xét (O) có 

\(\widehat{AIB}\) là góc nội tiếp chắn nửa đường tròn

nên \(\widehat{AIB}=90^0\)(Hệ quả góc nội tiếp)

hay \(\widehat{FIB}=90^0\)

Xét tứ giác BIFO có 

\(\widehat{FOB}\) và \(\widehat{FIB}\) là hai góc đối

\(\widehat{FOB}+\widehat{FIB}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: BIFO là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

hay B,I,F,O cùng thuộc 1 đường tròn(đpcm)