K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2018

a) Sử dụng định lí Fermat nhỏ: Với mọi \(n\inℕ\)\(p\ge2\)là số nguyên tố. Ta luôn có \(n^p-n⋮7\)

Dễ thấy 7 là số nguyên tố. Do đó \(n^7-n⋮7\)

Có thể sự dụng pp quy nạp toán học hay biến đổi đẳng thức rồi sử dụng pp xét từng giá trị tại 7k+n với 7>n>0

b)Ta có: \(2n^3+3n^2+n=2n^3+2n^2+n^2+n\)

\(=n^2\left(2n+1\right)+n\left(2n+1\right)\)

\(=n\left(n+1\right)\left(2n+1\right)\)

Ta thấy n(n+1) chia hết 2. Chỉ cần chứng minh thêm đằng thức trên chia hết cho 3

Đặt n=3k+1 và n=3k+2. Tự thế vài và CM

c) Tương tự: \(n^5-5n^3+4n=n^3\left(n^2-1\right)-4n\left(n^2-1\right)\)

\(=\left(n-1\right)\left(n+1\right)\left(n^3-4n\right)\)

\(=\left(n-1\right)\left(n+1\right)n\left(n^2-4\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)\)

Sắp xếp lại cho trật tự: \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)

Dễ thấy đẳng thức trên chia hết cho 5

Mà ta có: \(n\left(n+1\right)\left(n+2\right)⋮3\)

Và \(\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮4\)

Và tích của hai số bất kì cũng chia hết cho 2

Vậy đẳng thức trên chia hết cho 3.4.2.5=120

Cậu cuối bn chứng minh cách tương tự. :)

Mik cảm ơn bn nhìu nha!!!!^-^!!!

3 tháng 7 2018

a. Ta có: \(x^2-10x+26+y^2+2y=0\Leftrightarrow\left(x^2-10x+25\right)+\left(y^2+2y+1\right)=0\\ \)

\(\Leftrightarrow\left(x+5\right)^2+\left(y+1\right)^2=0\Rightarrow\hept{\begin{cases}x+5=0\\y+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-1\end{cases}}}\)

b. \(\left(2x+5\right)^2-\left(x-7\right)^2=0\Leftrightarrow\left(2x+5+x-7\right).\left(2x+5-x+7\right)=0\)

\(\Leftrightarrow\left(3x-2\right).\left(x+12\right)=0\Leftrightarrow\orbr{\begin{cases}3x-2=0\\x+12=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=-12\end{cases}}}\)

c. \(25.\left(x-3\right)^2=49.\left(1-2x\right)^2\Leftrightarrow\left(5x-15\right)^2=\left(7-14x\right)^2\Leftrightarrow\left(5x-15\right)^2-\left(7-14x\right)^2=0\)

\(\Leftrightarrow\left(5x-15-7+14x\right).\left(5x-15+7-14x\right)=0\Leftrightarrow\left(19x-22\right).\left(-9x-8\right)=0\)

\(\Leftrightarrow\left(19x-22\right).\left(9x+8\right)=0\Leftrightarrow\orbr{\begin{cases}19x-22=0\\9x+8=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{22}{19}\\x=-\frac{8}{9}\end{cases}}}\)

d. \(\left(x+2\right)^2=\left(3x-5\right)^2\Leftrightarrow\left(x+2\right)^2-\left(3x-5\right)^2=0\Leftrightarrow\left(x+2+3x-5\right).\left(x+3-3x+5\right)=0\)

\(\Leftrightarrow\left(4x-3\right).\left(8-2x\right)=0\Leftrightarrow\orbr{\begin{cases}4x-3=0\\8-2x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{4}\\x=4\end{cases}}}\)

e. \(x^2-2x+1=16\Leftrightarrow\left(x-1\right)^2-16=0\Leftrightarrow\left(x-1-4\right).\left(x-1+4\right)=0\)

\(\Leftrightarrow\left(x-5\right).\left(x+3\right)=0\Leftrightarrow\orbr{\begin{cases}x-5=0\\x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=-3\end{cases}}}\)

Cảm ơn bn rất nhìu nha!!!^-^!!!

10 tháng 7 2019

\(\left(x+5\right)^2-3\left(x+5\right)\)

\(=\left(x+5\right)\left(x+5-3\right)\)

\(=\left(x+5\right)\left(x+2\right)\)

10 tháng 7 2019

\(2x\left(x-3\right)-\left(x-3\right)^2\)

\(=\left(x-3\right)\left(2x-x+3\right)\)

\(=\left(x-3\right)\left(x+3\right)\)

8 tháng 7 2016
  • Bài 1. 

a) \(\left(5x+1\right)^2-\left(5x-3\right)\left(5x+3\right)=30\)

\(\Leftrightarrow\left(25x^2+10x+1\right)-25x^2+9=30\)

\(\Leftrightarrow10x=20\Leftrightarrow x=2\)

b) \(\left(x-1\right)\left(x^2+x+1\right)-x\left(x+2\right)\left(x-2\right)=5\)

\(\Leftrightarrow x^3-1-x^3+4x-5=0\)

\(\Leftrightarrow4x=6\Leftrightarrow x=\frac{3}{2}\)

  • Ta có : \(A=1997.1999=\left(1998-1\right)\left(1998+1\right)=1998^2-1< 1998^2\)

\(\Rightarrow A< B\)

  • Từ a+b+c=2p => \(p=\frac{a+b+c}{2}\)

Ta có : \(4p\left(p-a\right)=2\left(a+b+c\right)\left(\frac{a+b+c}{2}-a\right)=2.\left(a+b+c\right).\frac{b+c-a}{2}\)

\(=\left(a+b+c\right)\left(b+c-a\right)=\left[\left(b+c\right)+a\right]\left[\left(b+c\right)-a\right]=\left(b+c\right)^2-a^2\)

\(=b^2+c^2-a^2+2bc\)

Bài cuối bạn sửa 2ab thành 2bc nhé ^^

5 tháng 11 2016

4a) \(\left(a+b\right)^2=a^2+2ab+b^2\)

\(\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab=a^2+b^2+2ab\)

=> (a+b)^2=(a-b)^2+4ab

9 tháng 11 2016
  • 2x – x2 + 2 – x – (3x2 + 6x + 5x +10) = – 4x2 + 2
  • 2x – x2 + 2 – x – 3x2 – 6x – 5x – 10 = – 4x2 + 2 –10x = 10 x = – 1
  • 2x2 – 6x + x – 3 = 0

(x – 3)(2x + 1) = 0

x = 3 hay x = -1/2

17 tháng 10 2020

Bài 4.

a) 3xy2 - 45x2y = 3xy( y - 15x )

b) 25y2 - 4x2 + 4x - 1

= 25y2 - ( 4x2 - 4x + 1 )

= ( 5y )2 - ( 2x - 1 )2

= ( 5y - 2x + 1 )( 5y + 2x - 1 )

c) x2 - 5x + xy - 5y

= x( x - 5 ) + y( x - 5 )

= ( x - 5 )( x + y )

d) x2 - 8x - 33

= x2 + 3x - 11x - 33

= x( x + 3 ) - 11( x + 3 )

= ( x + 3 )( x - 11 )

Bài 5.

a) A = ( x - 2 )3 - x2( x - 4 ) + 8

= x3 - 6x2 + 12x - 8 - x3 + 4x2 + 8

= -2x2 + 12x

B = ( x2 - 6x + 9 ) : ( x - 3 ) - x( x + 7 ) - 9

= ( x - 3 )2 : ( x - 3 ) - x2 - 7x - 9

= x - 3 - x2 - 7x - 9

= -x2 - 6x - 12

b) Với x = -1 thì A = -2.(-1)2 + 12.(-1) = -2 - 12 = -14