Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ (x-3)2 - 4 = 0
=> (x-3-2)(x-3+2)=0
=> (x-5)(x-1)=0
=> x = 5 hoặc x=1
a. \(x\left(x^2-25\right)-\left(x^3-2x^2+4x+2x^2-4x+8\right)=17\)
\(x^3-25x-\left(x^3+8\right)=17\)
\(x^3-25x-x^3-8=17\)
\(-25x=25\)
\(x=-1\)
c. \(6x^2-\left(6x^2-4x+15x-10\right)=7\)
\(6x^2-6x^2-11x+10=7\)
\(-11x=-3\)
\(x=\frac{3}{11}\)
a: \(x\in\left\{0;25\right\}\)
c: \(x\in\left\{0;5\right\}\)
a) \(\Leftrightarrow x^2-4x-x^2+6x-9=0\\ \Leftrightarrow2x=9\\ \Leftrightarrow x=4,5\)
b) \(\Leftrightarrow x^2-3x-10=0\\ \Leftrightarrow\left(x^2+2x\right)-\left(5x+10\right)=0\\ \Leftrightarrow x\left(x+2\right)-5\left(x+2\right)=0\\ \left(x-5\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
c) \(\Leftrightarrow\left(2x-3-7\right)\left(2x-3+7\right)=0\\ \Leftrightarrow\left(2x-10\right)\left(2x+4\right)=0\\ \Leftrightarrow\left(x-5\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
d) \(\Leftrightarrow\left(2x+7\right)\left(x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7}{2}\\x=5\end{matrix}\right.\)
a) x = 1; x = - 1 3 b) x = 2.
c) x = 3; x = -2. d) x = -3; x = 0; x = 2.
(x + 4)2 - (x + 1)(x - 1) = 16
=> x2 + 8x + 16 - x2 + 1 = 16
=> 8x + 17 = 16
=> 8x = -1
=> x = -1/8
b) (2x - 1)2 + (x - 3)2 - 5(x + 7)(x - 7) = 0
=> (4x2 - 4x + 1) + (x2 - 6x + 9) - 5(x2 - 49) = 0
=> 5x2 - 10x + 10 - 5x2 + 245 = 0
=> -10x + 255 = 0
=> 10x = 255
=> x = 25,5
Vậy x = 25,5
a) \(5\left(x+7\right)-12x=15\)
\(5x+35-12x=15\)
\(-7x=15-35\)
\(-7x=-20\)
\(x=\frac{20}{7}\)
vay \(x=\frac{20}{7}\)
b) \(x^2-25-\left(x+5\right)=0\)
\(x^2-5^2-\left(x+5\right)=0\)
\(\left(x-5\right)\left(x+5\right)-\left(x+5\right)=0\)
\(\left(x+5\right)\left(x-5-1\right)=0\)
\(\left(x+5\right)\left(x-6\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+5=0\\x-6=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-5\\x=6\end{cases}}\)
vay \(\orbr{\begin{cases}x=-5\\x=6\end{cases}}\)
c) \(\left(2x-1\right)^2-\left(4x^2-1\right)=0\)
\(\left(2x-1\right)\left(2x-1\right)-\left(\left(2x\right)^2-1^2\right)=0\)
\(\left(2x-1\right)\left(2x-1\right)-\left(2x-1\right)\left(2x+1\right)=0\)
\(\left(2x-1\right)\left(2x-1-2x-1\right)=0\)
\(-2.\left(2x-1\right)=0\)
\(\Rightarrow2x-1=0\)
\(\Rightarrow x=\frac{1}{2}\)
vay \(x=\frac{1}{2}\)
d) \(x^2.\left(x^2+4\right)-x^2-4=0\)
\(x^2\left(x^2+4\right)-\left(x^2+4\right)=0\)
\(\left(x^2-1\right)\left(x^2+4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2-1=0\\x^2+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x^2=1\\x^2=-4\end{cases}}\Rightarrow\orbr{\begin{cases}x=1hoacx=-1\\kotontai\end{cases}}\)
vay \(x=1\)hoac \(x=-1\)
Ta có: \(\left(x-2\right)\left(x^2+2x+7\right)+2\left(x^2-4\right)-5\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+2x+7\right)+2\left(x-2\right)\left(x+2\right)-5\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+2x+7+2x+4-5\right)\)
\(=\left(x-2\right)\left(x^2+4x+6\right)\)
Ta có: \(\left(x-2\right)\left(x^2+2x+7\right)+2\left(x^2-4\right)-5\left(x-2\right)=0\)
=>\(\left(x-2\right)\left(x^2+4x+6\right)=0\)
mà \(x^2+4x+6=x^2+4x+4+2=\left(x+2\right)^2+2>=2>0\forall x\)
nên x-2=0
=>x=2
Ta có: \(\left(x-2\right)\left(x^2+2x+7\right)+2\left(x^2-4\right)-5\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+2x+7\right)+2\left(x-2\right)\left(x+2\right)-5\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+2x+7+2x+4-5\right)\)
\(=\left(x-2\right)\left(x^2+4x+6\right)\)
Ta có: \(\left(x-2\right)\left(x^2+2x+7\right)+2\left(x^2-4\right)-5\left(x-2\right)=0\)
=>\(\left(x-2\right)\left(x^2+4x+6\right)=0\)
mà \(x^2+4x+6=x^2+4x+4+2=\left(x+2\right)^2+2>=2>0\forall x\)
nên x-2=0
=>x=2