Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình tự vẽ nha:
a, xét △ABM và △ecm có:
AM=ME(gt)
AMB=CME ( 2 góc đối đỉnh)
BM=CM (M là trung điểm của BC)
suy ra △ABM=△ECM(c.g.c)
b, vì △ABM=△ECM
NÊN BAM=CEM( 2 góc tương ứng)
mà 2 góc này SLT
nên AB//CE
hình tự vẽ nha:
a, xét △ABM và △ecm có:
AM=ME(gt)
AMB=CME ( 2 góc đối đỉnh)
BM=CM (M là trung điểm của BC)
suy ra △ABM=△ECM(c.g.c)
b, vì △ABM=△ECM
NÊN BAM=CEM( 2 góc tương ứng)
mà 2 góc này SLT
nên AB//CE
Hình tự vẽ nha !
a/ Xét ΔABM và ΔECM có:
MB=MC (Mlà trung điểm của BC)
góc AMB = góc EMC ( 2 góc đối đỉnh)
MA=ME(giả thiết)
Do đó ΔABM=ΔECM(c.g.c)
b/ vì ΔABM=ΔECM nên góc BAM= góc MEC (2 góc tương ứng)
mà góc BAM và góc MEC là 2 góc ở vị trí so le trong ( khi đoạn thẳng AE cắt AB và CE ở A và E) nên theo dấu hiệu nhận biết 2 đường thẳng song song => AB // CE
c/ d/ mình ko biết nha
Lời giải:
a. Xét tam giác $ABM$ và $ECM$ có:
$BM=CM$ (do $M$ là trung điểm $BC$)
$AM=EM$ (gt)
$\widehat{AMB}+\widehat{EMC}$ (đối đỉnh)
$\Rightarrow \triangle ABM=\triangle ECM$ (c.g.c)
b.
Từ tam giác bằng nhau phần a suy ra $\widehat{ABM}=\widehat{ECM}$
Mà hai góc này so le trong nên $AB\parallel CE$
c.
$AB\perp AC; AB\parallel CE$
$\Rightarrow AC\perp CE$ (đpcm)
a: Xét ΔABM và ΔECM có
MA=ME
\(\widehat{AMB}=\widehat{EMC}\)
MB=MC
Do đó: ΔAMB=ΔEMC
b: Xét tứ giác ABEC có
M là trung điểm của BC
M là trung điểm của AE
Do đó: ABEC là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ABEC là hình chữ nhật
Suy ra: AB//EC
c: Ta có: ABEC là hình chữ nhật
nên EC\(\perp\)AC
Đặt câu hỏi cho bộ phận in đậm của câu sau: Ngày rằm tháng tám là tết trung thu.
ddddddddddddddddddddddddddddddddddddddddddddddddddcccccccccccccccccccccccccccccccccccccc
Xét ABM và EMC có :
AM = ME
BM = CM
Góc AMB = góc CME ( đối đỉnh )
=> tam giac ABM = Tam giác EMC
Ta có : Tam giác AMB = tam giác EMC nên góc BAM = góc EMC
Mặt khác : 2 góc BAM và AEC nắm vị trí so le trong
=> AB // CE
c Xét tam giác AIB và tam gics CIK có :
AI = IC
BI = Ik
Góc AIB = góc CIK ( đối đỉnh )
=> tam giác AIB = tam giác CIK
Hình tự vẽ nha !
a/ Xét ΔABM và ΔECM có:
MB=MC (Mlà trung điểm của BC)
góc AMB = góc EMC ( 2 góc đối đỉnh)
MA=ME(giả thiết)
Do đó ΔABM=ΔECM(c.g.c)
b/ vì ΔABM=ΔECM nên góc BAM= góc MEC (2 góc tương ứng)
mà góc BAM và góc MEC là 2 góc ở vị trí so le trong ( khi đoạn thẳng AE cắt AB và CE ở A và E) nên theo dấu hiệu nhận biết 2 đường thẳng song song => AB // CE
a) Xét ΔABM vàΔECM có:
AM= ME(giả thiết)
AMB=CME( đối đỉnh)
BM=MC( do M là trung điểm của BC)
=> ΔABM= ΔECM( c-g-c).
b) Do ΔABM =ΔECM( theo câu a)
nên BÂM= CÊM ( 2 góc tương ứng).
Mà 2 góc này ở vị trí so le trong nên AB//CE.
hình tự vẽ nha:
a, xét △ABM và △ecm có:
AM=ME(gt)
AMB=CME ( 2 góc đối đỉnh)
BM=CM (M là trung điểm của BC)
suy ra △ABM=△ECM(c.g.c)
b, vì △ABM=△ECM
NÊN BAM=CEM( 2 góc tương ứng)
mà 2 góc này SLT
nên AB//CE
hình tự vẽ nha:
a, xét △ABM và △ecm có:
AM=ME(gt)
AMB=CME ( 2 góc đối đỉnh)
BM=CM (M là trung điểm của BC)
suy ra △ABM=△ECM(c.g.c)
b, vì △ABM=△ECM
NÊN BAM=CEM( 2 góc tương ứng)
mà 2 góc này SLT
nên AB//CE
tham khảo Câu hỏi của huỳnh thị tuyết như - Toán lớp 7 - Học toán với OnlineMath
a, Xét tam giác ABM và tam giác ECM có : góc AMB= góc EMC (2 góc đối đỉnh)
MA=ME (gt)
MB =MC (gt)
Nên tam giác ABM = tam giác ECM (c-g-c)
b, Vì tam giác ABM = tam giác ECM (cm câu a) nên góc ABM = góc ECM (2 góc tương ứng )
Mà góc ABM và góc ECM ở vị trí so le trong nên AB // CE
A A B C E
(giả thiết kết luận tự làm nha)
a) xét hai tam giác: ABM và ECM có:
AB=EC(gt)
\(\widehat{AMB}=\widehat{CME}\)(gt)
BM=CM(gt)(do AM là trung tuyến)
=> 2 tam giác đó bằng nhau
b) ta có \(\widehat{BAM}=\widehat{ECM}\)(hai góc tương ứng,do tam giác ABM=tam giác ECM - theo cma)
mà hai góc lại ở vị trí so le trong nên => \(EC//AB\)
c) ta có tam giác ABC cân tại A (gt)
=> \(\widehat{ABC}=\widehat{ACB}\)mà \(\widehat{ABC=}\widehat{ECM}\) (hai góc tương ứng)
=> \(\widehat{ACM}=\widehat{ECM}\)=> CB là phân giác
a, Xét ∆ ABM và ∆ECM tc
BM= CM( do M là tđ BC)
AM=EM ( do M là tđ AE)
^BMA và ^EMC đối đỉnh
=> ∆ ABM= ∆ ECM(c-g-c)
b, vì ∆ ABM = ∆ ECM (cmt)
=> AB=EC(2 cạnh tương ứng )
c, vì ∆ ABM = ∆ ECM (cmt)
=>^ABM = ^ ECM (2 góc tương ứng) mà chúng ở vị trí so le trong
=> BE=AC
Chúc bạn học tốt 👍
a) Do M là trung điểm BC (gt)
BM = CM
Do M là trung điểm của AE (gt)
AM = EM
Xét ΔABM và ΔECM có:
AM = EM (cmt)
∠AMB = ∠EMC (đối đỉnh)
BM = CM (cmt)
ΔABM = ΔECM (c-g-c)
b) Do ΔABM = ΔECM (cmt)
AB = CE (hai cạnh tương ứng)
c) Xét ΔAMC và ΔEMB có:
AM = BM (cmt)
∠AMB = ∠EMC (đối đỉnh)
BM = CM (cmt)
ΔAMC = ΔEMB (c-g-c)
∠ACM = ∠EBM (hai góc tương ứng)
Mà ∠ACM và ∠EBM là hai góc so le trong
⇒ AC // BE