Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong các pt sau, pt tích là
A.(x-2)^2(x+2)=2
B.0=(x-2)^2(x+2)
C.(x-2)^2(x+2)=2(x+2)
D. (x-2)^2(x+2)+(x+2)
7) \(A=1^2-2^2+3^2-4^2+...-2004^2+2005^2\)
\(A=\left(-1\right)\left(1^{ }+2\right)+\left(-1\right)\left(3+4\right)+...+\left(-1\right)\left(2003+2004\right)+2005^2\)
\(A=-\left(1+2+3+...+2004\right)+2005^2\)
\(A=-\dfrac{2004.\left(2004+1\right)}{2}+2005^2\)
\(A=-1002.2005+2005^2\)
\(A=2005\left(2005-1002\right)=2005.1003=2011015\)
8) \(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(B=\dfrac{\left(2^2-1\right)}{2-1}\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(B=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(B=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(B=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(B=\left(2^{32}-1\right)\left(2^{32}+1\right)-2^{64}\)
\(B=\left(2^{64}-1\right)-2^{64}\)
\(B=-1\)
\(1^2-2^2+3^2-4^2+...+97^2-98^2+99^2-100^2=\left(1-2\right)\left(1+2\right)+\left(3-4\right)\left(3+4\right)+...+\left(97-98\right)\left(97+98\right)+\left(99-100\right)\left(99+100\right)\)\(=-\left(1+2+3+4+...+97+98+99+100\right)\)
\(=-\left(\frac{101\times100}{2}\right)=-5050\)
Bài làm:
Ta có: \(\left(10^2+8^2+...+2^2+1^2\right)-\left(9^2+7^2+...+1^2\right)\)
\(=\left(10^2-9^2\right)+\left(8^2-7^2\right)+...+\left(2^2-1^2\right)+1\)
\(=\left(10-9\right)\left(10+9\right)+\left(8-7\right)\left(8+7\right)+...+\left(2-1\right)\left(2+1\right)+1\)
\(=19.1+15.1+...+3.1+1\)
\(=1+3+7+11+15+19\)
\(=56\)
Bài 1:
a) \(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)
\(=2^{32}-1\)
b) \(100^2+103^2+105^2+94^2=101^2+98^2+96^2+107^2\)
\(\Leftrightarrow100^2+103^2+105^2+94^2-101^2-98^2-96^2-107^2=0\)
\(\Leftrightarrow\left(100^2-98^2\right)+\left(103^2-101^2\right)-\left(107^2-105^2\right)-\left(96^2-94^2\right)=0\)
\(\Leftrightarrow2.198+2.204-2.212-2.190=0\)
\(\Leftrightarrow2\left(198+204-212-190\right)=0\)
\(\Leftrightarrow2.0=0\) (đúng)
Bài 2:
a) \(263^2+74.263+37^2\)
\(=263^2+2.37.263+37^2\)
\(=\left(263+37\right)^2\)
b) \(\left(50^2+48^2+46^2+...+2^2\right)-\left(49^2+47^2+45^2+...+1^2\right)\)
\(=50^2+48^2+46^2+...+2^2-49^2-47^2-45^2-...-1^2\)
\(=\left(50^2-49^2\right)+\left(48^2-47^2\right)+\left(46^2-45^2\right)+...+\left(2^2-1^2\right)\)
\(=\left(50+49\right)+\left(48+47\right)+\left(46+45\right)+...+\left(2+1\right)\)
\(=50+49+48+47+46+45+...+2+1\)
\(=\dfrac{\left(50+1\right).\left(50-1+1\right)}{2}=1275\)
Kết luận ...
Chịu
Bằng 9,869604401089358618.....