K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11

Chịu

16 tháng 11

Bằng 9,869604401089358618.....

5 tháng 5 2020

Bạn kiểm tra lại đề bài!

5 tháng 5 2020

Hình như đề bài ko đúng đó bn!..bn kiểm tra lại

23 tháng 12 2022

không chia hết \(\pi⋮̸2\) \(\pi=3,14\)

1 tháng 5 2023

Trong các pt sau, pt tích là

A.(x-2)^2(x+2)=2

B.0=(x-2)^2(x+2)

C.(x-2)^2(x+2)=2(x+2)

D. (x-2)^2(x+2)+(x+2)

1 tháng 5 2023

B. 0 = (x - 2)²(x + 2)

C. (x - 2)²(x + 2) = 2(x + 2)

10 tháng 8 2023

7) \(A=1^2-2^2+3^2-4^2+...-2004^2+2005^2\)

\(A=\left(-1\right)\left(1^{ }+2\right)+\left(-1\right)\left(3+4\right)+...+\left(-1\right)\left(2003+2004\right)+2005^2\)

\(A=-\left(1+2+3+...+2004\right)+2005^2\)

\(A=-\dfrac{2004.\left(2004+1\right)}{2}+2005^2\)

\(A=-1002.2005+2005^2\)

\(A=2005\left(2005-1002\right)=2005.1003=2011015\)

10 tháng 8 2023

8) \(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(B=\dfrac{\left(2^2-1\right)}{2-1}\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(B=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(B=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(B=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(B=\left(2^{32}-1\right)\left(2^{32}+1\right)-2^{64}\)

\(B=\left(2^{64}-1\right)-2^{64}\)

\(B=-1\)

20 tháng 9 2016

\(1^2-2^2+3^2-4^2+...+97^2-98^2+99^2-100^2=\left(1-2\right)\left(1+2\right)+\left(3-4\right)\left(3+4\right)+...+\left(97-98\right)\left(97+98\right)+\left(99-100\right)\left(99+100\right)\)\(=-\left(1+2+3+4+...+97+98+99+100\right)\)

\(=-\left(\frac{101\times100}{2}\right)=-5050\)

20 tháng 9 2016

mình cần phần đầu cơ

3 tháng 8 2020

Bài làm:

Ta có: \(\left(10^2+8^2+...+2^2+1^2\right)-\left(9^2+7^2+...+1^2\right)\)

\(=\left(10^2-9^2\right)+\left(8^2-7^2\right)+...+\left(2^2-1^2\right)+1\)

\(=\left(10-9\right)\left(10+9\right)+\left(8-7\right)\left(8+7\right)+...+\left(2-1\right)\left(2+1\right)+1\)

\(=19.1+15.1+...+3.1+1\)

\(=1+3+7+11+15+19\)

\(=56\)

6 tháng 8 2018

Bài 1:

a) \(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)

\(=2^{32}-1\)

b) \(100^2+103^2+105^2+94^2=101^2+98^2+96^2+107^2\)

\(\Leftrightarrow100^2+103^2+105^2+94^2-101^2-98^2-96^2-107^2=0\)

\(\Leftrightarrow\left(100^2-98^2\right)+\left(103^2-101^2\right)-\left(107^2-105^2\right)-\left(96^2-94^2\right)=0\)

\(\Leftrightarrow2.198+2.204-2.212-2.190=0\)

\(\Leftrightarrow2\left(198+204-212-190\right)=0\)

\(\Leftrightarrow2.0=0\) (đúng)

Bài 2:

a) \(263^2+74.263+37^2\)

\(=263^2+2.37.263+37^2\)

\(=\left(263+37\right)^2\)

b) \(\left(50^2+48^2+46^2+...+2^2\right)-\left(49^2+47^2+45^2+...+1^2\right)\)

\(=50^2+48^2+46^2+...+2^2-49^2-47^2-45^2-...-1^2\)

\(=\left(50^2-49^2\right)+\left(48^2-47^2\right)+\left(46^2-45^2\right)+...+\left(2^2-1^2\right)\)

\(=\left(50+49\right)+\left(48+47\right)+\left(46+45\right)+...+\left(2+1\right)\)

\(=50+49+48+47+46+45+...+2+1\)

\(=\dfrac{\left(50+1\right).\left(50-1+1\right)}{2}=1275\)

Kết luận ...