K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2015

x4 \(\ge\) 0 ; 3x2 \(\ge\) 0 => x4 + 3x2 + 4 \(\ge\) 0 + 0 + 4 = 4

=> GTNN  của biểu thức là 4 tại x = 0 

24 tháng 1 2017

ban ay tha thu roi ma HAPPY LEN DI

24 tháng 1 2017

TOI NGHIEP CHO SO PHAN

13 tháng 10 2017

UKM!!?!

19 tháng 11 2021

a/ Xét tứ giác AEDC có

IA=ID; IC=IE => AEDC là hình bình hành (tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường là hbh)

=> ED//AC và ED=AC (trong hbh các cặp cạnh đối song song và = nhau từng đôi một)

b/ 

Ta có AEDC là hbh => AE//DC và AE=DC (trong hbh các cặp cạnh đối song song và = nhau từng đôi một)

Mà DC=DB => AE=BD

\(DB\in DC\) => AE//DB

=> AEBD là hình bình hành (Tứ giác có 1 cặp cạnh đối // và bằng nhau thì là hbh) 

=> EB=AD và EB//AD  (trong hbh các cặp cạnh đối song song và = nhau từng đôi một)

Ta có EB//AD mà \(AD\perp BC\Rightarrow EB\perp BC\)

c/ Ta có AEBD là hbh => JA=JB (Trong hbh hai đường chéo cắt nhau tại trung điểm mỗi đường) => J là trung điểm AB

d/ Xét \(\Delta ABD\)

JA=JB; IA=ID => IJ là đường trung bình của \(\Delta ABD\) => IJ//BC

\(\Rightarrow IJ=\frac{DB}{2}\)

Ta có DB=DC (Trong tg cân đường cao từ đỉnh đồng thời là đường trung tuyến)\(\Rightarrow DB=\frac{BC}{2}\)

\(\Rightarrow IJ=\frac{DB}{2}=\frac{\frac{BC}{2}}{2}=\frac{1}{4}BC\)

e/

Xét HCN AEBD có

\(\Rightarrow JE=JD=\frac{ED}{2}\)  (trong HCN hai đường chéo cắt nhau tại trung điểm mỗi đường)

Xét tg vuông EKD có

\(JE=JD\Rightarrow IK=\frac{ED}{2}=JE=JD\)  (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền) 

\(\Rightarrow\Delta AJK;\Delta BJK\) cân tại J \(\Rightarrow\widehat{BAK}=\widehat{AKJ};\widehat{ABK}=\widehat{BKJ}\) (góc ở đáy tg cân) (1)

Xét \(\Delta AKB\)

\(\widehat{BAK}+\widehat{ABK}+\widehat{AKB}=180^o\) (tổng các góc trong của tg = 180 độ)

\(\Rightarrow\widehat{BAK}+\widehat{ABK}+\widehat{AKJ}+\widehat{BKJ}=180^o\)(2)

Từ (1) và (2) \(\Rightarrow2\left(\widehat{AKJ}+\widehat{BKJ}\right)=180^o\Rightarrow\widehat{AKJ}+\widehat{BKJ}=\widehat{AKB}=90^o\)

f/

Xét tg vuông IBD và tg vuông ICD có

ID chung 

DB=DC (cmt)

\(\Rightarrow\Delta IBD=\Delta ICD\) (Hai tg vuông có 2 cạnh góc vuông bằng nhau) \(\Rightarrow\widehat{IBD}=\widehat{ICD}\) (1)

Xét tg vuông IDK

\(\widehat{IDK}+\widehat{CID}=90^o\)

Xét tg vuông ICD

\(\widehat{ICD}+\widehat{CID}=90^o\) 

\(\Rightarrow\widehat{IDK}=\widehat{ICD}\) (cùng phụ với \(\widehat{CID}\) (2)

Từ (1) và (2) \(\Rightarrow\widehat{IDK}=\widehat{IBD}\)

19 tháng 11 2021

thanks bạn nhiều

1 tháng 5 2016

CON GÌ CÀNG TO CÀNG NHỎ ^_^

24 tháng 12 2015

ờ , sao cũng đc , tick tớ đi , tớ tick lại cho

23 tháng 10 2016

Bài 1:

Giải:

Ta có: \(3\left(x-1\right)=2\left(y-2\right)=3\left(z-3\right)\)

\(\Rightarrow\frac{x-1}{\frac{1}{3}}=\frac{y-2}{\frac{1}{2}}=\frac{z-3}{\frac{1}{3}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x-1}{\frac{1}{3}}=\frac{y-2}{\frac{1}{2}}=\frac{z-3}{\frac{1}{3}}=\frac{2x-2}{\frac{2}{3}}=\frac{3y-6}{\frac{3}{2}}=\frac{z-3}{\frac{1}{3}}=\frac{2x-2+3y-6+z-3}{\frac{2}{3}+\frac{3}{2}+\frac{1}{3}}=\frac{\left(2x+3y+z\right)-\left(2+6+3\right)}{\frac{5}{2}}\)

\(=\frac{50-11}{\frac{5}{2}}=\frac{39}{\frac{5}{2}}=39.\frac{2}{5}=15,6\)

+) \(\frac{x-1}{\frac{1}{3}}=15,6\Rightarrow x-1=5,2\Rightarrow x=6,2\)

+) \(\frac{y-2}{\frac{1}{2}}=15,6\Rightarrow y-2=7,8\Rightarrow y=9,8\)

+) \(\frac{z-3}{\frac{1}{3}}=15,6\Rightarrow z-3=5,2\Rightarrow z=8,2\)

Vậy bộ số \(\left(x;y;z\right)\)\(\left(6,2;9,8;8,2\right)\)

27 tháng 10 2016

Vậy còn mấy câu kja hì sao pạn???