\(1^2\)+\(2^2\)+\(3^2\)+.....">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(2^2+4^2+...+24^2\)

\(=2^2\left(1^2+2^2+...+12^2\right)\)

\(=4\cdot650=2600\)

b: \(2^3+4^3+...+20^3\)

\(=2^3\left(1^3+2^3+...+10^3\right)\)

\(=8\cdot3025=24200\)

10 tháng 11 2024

24200

5 tháng 9 2020

a) Nhân 2 vế của đẳng thức đầu cho 23---> \(1^3.2^3+2^3.2^3+...+10^3.2^3=3025.2^3\)

                                                                  \(\Rightarrow2^3+4^3+...+20^3=3025.8=24200\)

b Chia 2 vế của đẳng thức đầu cho 23---> \(\frac{1^3}{2^3}+\frac{2^3}{2^3}+...+\frac{10^3}{2^3}=\frac{3025}{2^3}\)

                                                               \(\Rightarrow0,5^3+1^3+2^3+...+5^3=\frac{3025}{8}=378,125\)

29 tháng 9 2018

((3\(^2\)))\(^2\) - ((-5\(^2\)))\(^2\) + ((-2\(^3\)))\(^2\)

= 81 - 625 + 64

= -544+ 64

= -480

2\(^4\) + 8[(-2)\(^2\) :\(\dfrac{1}{2}\)]\(^0\) - 2\(^{-2}\). 4 + (-2)\(^2\)

= 16+ 8.1 - \(\dfrac{1}{4}\). 4 + 4

= 16+ 8- 1+4

= 27

2\(^4\) + 3(\(\dfrac{1}{2}\))\(^0\) + 2\(^{-2}\).8 + [(-2)\(^3\). \(\dfrac{1}{2^4}\)].2 - \(\dfrac{1}{2}\)

= 16 + 3.1 +\(\dfrac{1}{4}\).8 + [(-8).\(\dfrac{1}{16}\)].2 -\(\dfrac{1}{2}\)

= 16 + 3+ 2 + \(\dfrac{-1}{2}\).2- \(\dfrac{1}{2}\)

= 21 + (-1)- \(\dfrac{1}{2}\)

= 20-\(\dfrac{1}{2}\) = \(\dfrac{40}{2}\) - \(\dfrac{1}{2}\)= \(\dfrac{39}{2}\)

\(\dfrac{15^{10}.5^{10}}{75^{10}}\) + \(\dfrac{\left(0,8\right)^5}{\left(0,4\right)^6}\)

= \(\dfrac{\left(15.5\right)^{10}}{75^{10}}\) + \(\dfrac{\left(0,4.2\right)^5}{\left(0.4\right)^6}\)

= \(\dfrac{75^{10}}{75^{10}}\) + \(\dfrac{\left(0,4\right)^5.2^5}{\left(0,4\right)^6}\)

= 1 + \(\dfrac{2^5}{0,4}\) = 1+ 80 = 81

\(\dfrac{2^{13}.9^4}{6^3.8^3}\)

= \(\dfrac{2^{13}.\left(3^2\right)^4}{\left(2.3\right)^3.\left(2^3\right)^3}\) = \(\dfrac{2^{13}.3^8}{2^3.3^3.2^9}\)

= \(\dfrac{2^4.3^5}{2^3}\) = 2.3\(^5\) = 486

a: \(A=\dfrac{\dfrac{3}{8}-\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}}{\dfrac{-5}{8}+\dfrac{5}{10}-\dfrac{5}{11}-\dfrac{5}{12}}+\dfrac{\dfrac{3}{2}+\dfrac{3}{3}-\dfrac{3}{4}}{\dfrac{5}{2}+\dfrac{5}{3}-\dfrac{5}{4}}\)

\(=\dfrac{-3}{5}+\dfrac{3}{5}=0\)

b: \(=3^4-\left(-8\right)^2-\left(-25\right)^2\)

\(=81-64-625=-608\)

c: \(=2^3+3\cdot1\cdot\dfrac{1}{4}\cdot4+\left[4:\dfrac{1}{2}\right]:8\)

\(=8+3+4\cdot2:8=11+1=12\)

a: \(\Leftrightarrow2^x\cdot\dfrac{1}{2}+2^x\cdot2=2^{10}\left(2^2+1\right)\)

\(\Leftrightarrow2^x=2^{10}\cdot5:\dfrac{5}{2}=2^{10}\cdot5\cdot\dfrac{2}{5}=2^{11}\)

=>x=11

b: \(\Leftrightarrow3^x\cdot\dfrac{1}{3}+3^x\cdot9=3^{13}\cdot28\)

\(\Leftrightarrow3^x=3^{13}\cdot28:\dfrac{28}{3}=3^{14}\)

hay x=14

17 tháng 8 2018

a,(=)\(3^{x+1}.\left(3+4\right)=7.3^6\)

(=)\(3^{x+1}=3^6\)

=>x+1=6(=)x=5

b

19 tháng 6 2018

8)\(\frac{4}{9}:\left(-\frac{1}{7}\right)+6\frac{5}{9}:\left(-\frac{1}{7}\right)\)

=\(\frac{4}{9}:\left(-\frac{1}{7}\right)+\frac{59}{9}:\left(-\frac{1}{7}\right)\)

=\(\left(\frac{4}{9}+\frac{59}{9}\right).\left(-7\right)\)

=7.(-7)

=-49

1 tháng 2 2024

Lalalalalalalalalalalalalalalala

8 tháng 9 2019

Bài 1:

a) \(\left(\frac{1}{2}\right)^2\)\(\left(\frac{1}{2}\right)^5\)

Ta có: \(\left(\frac{1}{2}\right)^2=\frac{1}{4}.\)

\(\left(\frac{1}{2}\right)^5=\frac{1}{32}.\)

\(\frac{1}{4}< \frac{1}{32}.\)

=> \(\left(\frac{1}{2}\right)^2< \left(\frac{1}{2}\right)^5.\)

b) \(\left(2,4\right)^3\)\(\left(2,4\right)^2\)

Ta có: \(\left(2,4\right)^3=13,824.\)

\(\left(2,4\right)^2=5,76.\)

\(13,284>5,76.\)

=> \(\left(2,4\right)^3>\left(2,4\right)^2.\)

c) \(\left(-1\frac{1}{2}\right)^2\)\(\left(-1\frac{1}{2}\right)^3\)

Ta có: \(\left(-1\frac{1}{2}\right)^2=\left(-\frac{3}{2}\right)^2=\frac{9}{4}.\)

\(\left(-1\frac{1}{2}\right)^3=\left(-\frac{3}{2}\right)^3=-\frac{27}{8}.\)

Vì số dương luôn lớn hơn số âm nên \(\frac{9}{4}>-\frac{27}{8}.\)

=> \(\left(-1\frac{1}{2}\right)^2>\left(-1\frac{1}{2}\right)^3.\)

Chúc bạn học tốt!

16 tháng 10 2018

\(B=\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{98}+\left(\dfrac{1}{2}\right)^{99}\)

\(\Rightarrow2B=1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{97}+\left(\dfrac{1}{2}\right)^{98}\)

\(\Rightarrow2B-B=1-\left(\dfrac{1}{2}\right)^{99}\)

\(B=1-\left(\dfrac{1}{2}\right)^{99}\)

\(2,\)

\(a,\dfrac{45^{10}.2^{10}}{75^{15}}\)

\(=\dfrac{5^{10}.9^{10}.2^{10}}{25^{15}.3^{15}}\)

\(=\dfrac{5^{10}.3^{20}.2^{10}}{5^{30}.3^{15}}\)

\(=\dfrac{5^{10}.3^{15}.\left(3^5.2^{10}\right)}{5^{10}.3^{15}.\left(5^{20}\right)}\)

\(=\dfrac{3^5.2^{10}}{5^{20}}\)

\(b,\dfrac{2^{15}.9^4}{6^3.8^3}\)

\(=\dfrac{2^{15}.3^8}{2^3.3^3.2^9}=\dfrac{2^{15}.3^8}{2^{12}.3^3}=2^3.3^5\)

\(c,\dfrac{8^{10}+4^{10}}{8^4+4^{11}}=\dfrac{4^{10}.2^{10}+4^{10}}{4^4.2^4+4^4.4^7}=\dfrac{4^4.\left(4^6.2^{10}+4^6\right)}{4^4.\left(2^4+4^7\right)}\)

\(=\dfrac{4^{11}+4^6}{4^8.4^7}=\dfrac{4^6.\left(4^5+1\right)}{4^6.\left(4^2-4\right)}=\dfrac{1024+1}{16-4}=\dfrac{1025}{12}\)

\(d,\dfrac{81^{11}.3^{17}}{27^{10}.9^{15}}=\dfrac{3^{44}.3^{17}}{3^{30}.3^{30}}=\dfrac{3^{61}}{3^{60}}=3\)

\(3,\)

\(a,\left(2x+4\right)^2=\dfrac{1}{4}\)

\(\left(2x+4\right)^2=\left(\dfrac{1}{2}\right)^2=\left(\dfrac{-1}{2}\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}2x+4=\dfrac{1}{2}\\2x+4=\dfrac{-1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=\dfrac{1}{2}-4=\dfrac{-7}{2}\\2x=\dfrac{-1}{2}-4=\dfrac{-9}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-7}{4}\\x=\dfrac{-9}{4}\end{matrix}\right.\)

Vậy \(x\in\left\{\dfrac{-7}{4};\dfrac{-9}{4}\right\}\)

\(b,\left(2x-3\right)^2=36\)

\(\left(2x-3\right)^2=6^2=\left(-6\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}2x-3=6\\2x-3=-6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=6+3=9\\2x=-6+3=-3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{9}{2}\\x=\dfrac{-3}{2}\end{matrix}\right.\)

Vậy \(x\in\left\{\dfrac{9}{2};\dfrac{-3}{2}\right\}\)

\(c,5^{x+2}=628\)

\(5^{x+2}=5^4\)

\(\Rightarrow x+2=4\)

\(\Rightarrow x=4-2=2\)

Vậy \(x=2\)

\(d,\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\)

\(\Rightarrow\left(x-1\right)^{x+4}-\left(x-1\right)^{x+2}=0\)

\(\Rightarrow\left(x-1\right)^{x+2}.\left[\left(x-1\right)^2-1\right]=0\)

\(\Rightarrow\left[{}\begin{matrix}\left(x-1\right)^{x+2}=0\\\left(x-1\right)^2-1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\\left(x-1\right)^2=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x-1=1\\x-1=-1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\\x=0\end{matrix}\right.\)

Vậy \(x\in\left\{0;1;2\right\}\)

16 tháng 10 2018

Bài 1:

B= \(\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+...+\left(\dfrac{1}{2}\right)^{99}\)

2B= \(2.[\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{99}]\)

2B= \(1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{98}\)

⇒2B-B= \(1-\left(\dfrac{1}{2}\right)^{99}\)

B= 1

Vậy B=1

Bài 2:

a, \(\dfrac{45^{10}.2^{10}}{75^{15}}\)= \(\dfrac{\left(3^2.5\right)^{10}.2^{10}}{\left(3.5^2\right)^{15}}=\dfrac{3^{20}.5^{10}.2^{10}}{3^{15}.5^{30}}=\dfrac{3^5.2^{10}}{5^{20}}\)

b, \(\dfrac{2^{15}.9^4}{6^3.8^3}=\dfrac{2^{15}.\left(3^2\right)^4}{\left(2.3\right)^3.\left(2^3\right)^3}=\dfrac{2^{15}.3^8}{2^3.3^3.2^9}=\dfrac{2^{15}.3^8}{2^{12}.3^3}=2^3.3^5\)

c,\(\dfrac{8^{10}+4^{10}}{8^4+4^{11}}=\dfrac{\left(2.4\right)^{10}+4^{10}}{\left(2.4\right)^4+4^{11}}=\dfrac{2^{10}.4^{10}+4^{10}}{2^4.4^4+4^{11}}=\dfrac{4^{10}.\left(2^{10}+1\right)}{4^6+4^6.4^5}=\dfrac{4^{10}.\left(2^{10}+1\right)}{4^6.\left(4^5+1\right)}=\dfrac{4^{10}.\left(2^{10}+1\right)}{4^6.\left(2^{10}+1\right)}=4^4=256\)

d, \(\dfrac{81^{11}.3^{17}}{27^{10}.9^{15}}=\dfrac{\left(3^4\right)^{11}.3^{17}}{\left(3^3\right)^{10}.\left(3^2\right)^{15}}=\dfrac{3^{44}.3^{17}}{3^{30}.3^{30}}=\dfrac{3^{61}}{3^{60}}=3\)

Bài 3:

a, \(\left(2x+4\right)^2=\dfrac{1}{4}\)

\(\left(2x+4\right)^2=\left(\dfrac{1}{2}\right)^2\)

\(2x+4=\dfrac{1}{2}\)

\(2x=\dfrac{1}{2}-4\)

\(2x=-\dfrac{7}{2}\)

\(x=-\dfrac{7}{2}:2\)

\(x=-\dfrac{7}{2}.\dfrac{1}{2}\)

\(x=-\dfrac{7}{4}\)

b, \(\left(2x-3\right)^2=36\)

\(\left(2x-3\right)^2=6^2\)

\(2x-3=6\)

\(2x=9\)

\(x=\dfrac{9}{2}\)

c, \(5^{x+2}=625\)

\(5^{x+2}=5^4\)

\(x+2=4\)

\(x=2\)