![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,x^3\left(3x^2-x-\dfrac{1}{2}\right)\)
\(=3x^5-x^4-\dfrac{1}{2}x^3\)
\(b,\left(5xy-x^2+y\right).\dfrac{2}{5xy^2}\)
\(=\dfrac{2}{y}-\dfrac{2x}{5y^2}+\dfrac{2}{xy}\)
\(c,\left(4x^3-3xy^2+2xy\right)\left(-\dfrac{1}{3}x^2y\right)\)
\(=-\dfrac{4x^5y}{3}+x^3y^3-\dfrac{2x^3y^2}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(4x^2+4z^2=17\Rightarrow x^2+z^2=\frac{17}{4}\); \(4y\left(x+2\right)=5\Leftrightarrow2xy+4y=\frac{5}{2}\); \(20y^2+27=-16z\Rightarrow5y^2+4z=-\frac{27}{4}\)
\(\Rightarrow x^2+z^2-2xy-4y+5y^2+4z=-5\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(z^2+4z+4\right)+\left(4y^2-4y+1\right)=0\)\(\Leftrightarrow\left(x-y\right)^2+\left(z+2\right)^2+\left(2y-1\right)^2=0\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{2}\\z=-2\end{cases}}\)
\(\Rightarrow M=10.\frac{1}{2}+4.\frac{1}{2}+2019.\left(-2\right)=-4031\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(=15x^4-12x^3+9x^2\)
c: \(=5x^3-15x^2-4x^2+12x\)
\(=5x^3-19x^2+12x\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Phân tích các đa thức sau thành nhân tử ... c) 6x(x+y)^2+3x^2y(x+y). 2: .... x3 - 5x + 8x - 4=x2 . x -5x + 8x -22 = (x2 - 22) . (x -5x + 8x )=(x-2) . (x+2) . 4x. x3 - 9x2 ..... Phân tích các đa thức sau thành nhân tử : a,x^3+5x^2+8x+4 b, x^3-9x^2+6x+16 .
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^2-5xy-20y+4x\)
\(=x^2+4x-5xy-20y\)
\(=x\left(x+4\right)-5y\left(x+4\right)\)
\(=\left(x-5y\right)\left(x+4\right)\)