K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2024

\(x^2+2y^2-2xy-4y+5\)

\(=x^2-2xy+y^2+y^2-4y+4+1\)

\(=\left(x-y\right)^2+\left(y-2\right)^2+1\)

Do \(\left(x-y\right)^2\ge0\) (với mọi \(x\in R\))

\(\left(y-2\right)^2\ge0\) (với mọi \(x\in R\))

\(\Rightarrow\left(x-y\right)^2+\left(y-2\right)^2+1\ge1\)

Vậy giá trị nhỏ nhất của biểu thức đã cho là 1 khi \(x=y=2\)

Em xem lại đề nhé, không có max

DT
2 tháng 11 2024

x²+2y²-2xy-4y+5

= (x²-2xy+y²)+(y²-4y+4)+1

= (x-y)²+(y-2)²+1≥1 với mọi x, y

Min bt = 1 xảy ra tại: (x-y)²=(y-2)²=0

<=> x=y=2

16 tháng 8 2015

 

M= x2 +2y2 +2xy -4y +5

=x2+2xy+y2+y2-4y+4+1

=(x+y)2+(y-2)2+1

Vì \(\left(x+y\right)^2\ge0;\left(y-2\right)^2\ge0\)

nên: \(\left(x+y\right)^2+\left(y-2\right)^2+1\ge1\)

 Dấu "=" xảy ra khi:

y-2=0 và x+y=0

<=>y=2 và x+2=0

<=>y=2 và x=-2

Vậy GTNN của M là 1 tại x=-2;y=2

22 tháng 6 2016

\(A=-\left(x^2-2x\left(y+1\right)+\left(y+1\right)^2\right)-\left(4y^2-10y-5-\left(y+1\right)^2\right)\)

\(=-\left(x-y-1\right)^2-\left(3y^2-12y-6\right)\)

\(=-\left(x-y-1\right)^2-3\left(y-2\right)^2+18\le18\)

Max A=18 khi y=2; x=3

22 tháng 6 2016

\(B=-\left(x^2+2x\left(y-1\right)+\left(y-1\right)^2\right)-\left(2y^2+2y-\left(y-1\right)^2\right)-15\)

\(=-\left(x+y-1\right)^2-\left(y+2\right)^2-10\le-10\)

Max B=-10 khi y=-2; x= 3

19 tháng 10 2020

Đặt A = -x2 + 2xy - 4y2 + 2x + 10y - 8

= -[(x2 - 2xy + y2) - 2(x - y) + 1] - (3y2 - 12y + 12) + 5

= -[(x - y - 1)2 + 3(y - 2)2] + 5\(\le\)5

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-y-1=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}\)

Vậy Max A = 5 <=> x = 3 ; y = 2

19 tháng 10 2020

-x2 + 2xy - 4y2 + 2x + 10y - 8 

= -( x2 - 2xy + y2 - 2x + 2y + 1 ) - ( 3y2 - 12y + 12 ) + 5

= -[ ( x2 - 2xy + y2 ) - ( 2x - 2y ) + 1 ] - 3( y2 - 4y + 4 ) + 5

= -[ ( x - y )2 - 2( x - y ) + 12 ] - 3( y - 2 )2 + 5

= -( x - y - 1 )2 - 3( y - 2 )2 + 5

Ta có : \(\hept{\begin{cases}-\left(x-y-1\right)^2\\-3\left(y-2\right)^2\end{cases}}\le0\forall x,y\Rightarrow-\left(x-y-1\right)^2-3\left(y-2\right)^2+5\le5\forall x,y\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-y-1=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}\)

Vậy GTLN của biểu thức = 5 <=> x = 3 ; y = 2

6 tháng 11 2016

phân tích đa thức có dạng m2 + n ( n thuộc z)

6 tháng 11 2016

bàn làm giúp mình đk ko ạ!

Bài 2: 

a: \(=-\left(x^2+2x-100\right)\)

\(=-\left(x^2+2x+1-101\right)\)

\(=-\left(x+1\right)^2+101< =101\)

Dấu = xảy ra khi x=-1

b: \(=-3\left(x^2-\dfrac{1}{3}x\right)\)

\(=-3\left(x^2-2\cdot x\cdot\dfrac{1}{6}+\dfrac{1}{36}-\dfrac{1}{36}\right)\)

\(=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{1}{12}< =\dfrac{1}{12}\)

Dấu = xảy ra khi x=1/6

c: \(=-\left(3x^2+4y^2-18x+8y-12\right)\)

\(=-\left(3x^2-18x+27+4y^2+8y+4-43\right)\)

\(=-3\left(x-3\right)^2-4\left(y+1\right)^2+43< =43\)

Dấu = xảy ra khi x=3 và y=-1

7 tháng 3 2016

Bài 1 :

=-5(x^2+4/5x+19/25)

=-5(x^2+2x.2/5+4/25+3/5)

=-5(x+2/5)^2-3

Vì (x+2/5)^2 lớn hơn hoặc bằng 0 =>-5(x+2/5)^2-3 nhỏ hơn hoặc bằng-3

Vậy Min là-3

1 tháng 5 2018

A \(=\) x\(^2\) +2y\(^2\) - 2xy- 4y + 5

\(=\) ( x\(^2\) + y\(^2\) - 2xy ) + ( y\(^2\) - 4y + 4 ) + 1

\(=\) ( x + y )\(^2\) + ( y - 2 )\(^2\) + 1

Vì ( x + y )\(^2\) và ( y - 2 )\(^2\) > 0 ∀ x và y

Nên ( x + y )\(^2\) + ( y - 2 )\(^2\) + 1 > 1 ∀ x và y

Vậy A có giá trị nhỏ nhất là 1 khi

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}\text{x + y =0}\\y-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=2\end{matrix}\right.\)

B = 5x\(^2\) + 8xy + 5y\(^2\) - 2x = 2y ???

Đề bài câu B sai

4 tháng 5 2018

Mình ghi sai đề

B=5x2 +8xy + 5y2 - 2x +2y mới đúng