Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\dfrac{1}{3}\right)^2-\left(\dfrac{1}{9}-\dfrac{2023}{2024}\right)\)
\(=\dfrac{1}{9}-\dfrac{1}{9}+\dfrac{2023}{2024}\)
\(=\dfrac{2023}{2024}\)
a) \(A=\left(-0,75-\dfrac{1}{4}\right):\left(-5\right)+\dfrac{1}{48}-\left(-\dfrac{1}{6}\right):\left(-3\right)\)
\(A=\left(-0,75-0,25\right):\left(-5\right)+\dfrac{1}{48}-\left(-\dfrac{1}{6}\right)\cdot\dfrac{-1}{3}\)
\(A=\left(-1\right):\left(-5\right)+\dfrac{1}{48}-\dfrac{1}{18}\)
\(A=\dfrac{1}{5}+\dfrac{1}{48}-\dfrac{1}{18}\)
\(A=\dfrac{119}{720}\)
b) \(B=\left(\dfrac{6}{25}-1,24\right):\dfrac{3}{7}:\left[\left(3\dfrac{1}{2}-3\dfrac{2}{3}\right):\dfrac{1}{14}\right]\)
\(B=\left(0,24-1,24\right):\dfrac{3}{7}:\left[\left(\dfrac{7}{2}-\dfrac{11}{3}\right):\dfrac{1}{14}\right]\)
\(B=-1:\dfrac{3}{7}:\left(-\dfrac{1}{6}:\dfrac{1}{14}\right)\)
\(B=-\dfrac{7}{3}:-\dfrac{7}{3}\)
\(B=1\)
a, A = (-0,75 - \(\dfrac{1}{4}\)) : (-5) + \(\dfrac{1}{48}\) - (- \(\dfrac{1}{6}\)) : (-3)
A = -(0,75 + 0,25): (-5) + \(\dfrac{1}{48}\) - \(\dfrac{1}{18}\)
A = -1 : (-5) + \(\dfrac{1}{48}\) - \(\dfrac{1}{18}\)
A = \(\dfrac{1}{5}\) + \(\dfrac{1}{48}\) - \(\dfrac{1}{18}\)
A = \(\dfrac{53}{240}\) - \(\dfrac{1}{18}\)
A = \(\dfrac{119}{720}\)
b, B = (\(\dfrac{6}{25}\) - 1,24): \(\dfrac{3}{7}\): [(3\(\dfrac{1}{2}\) - 3\(\dfrac{2}{3}\)): \(\dfrac{1}{14}\)]
B = (0,24 - 1,24): \(\dfrac{3}{7}\):[(\(\dfrac{7}{2}\)-\(\dfrac{11}{3}\)): \(\dfrac{1}{14}\)]
B = -1: \(\dfrac{3}{7}\):[ (-\(\dfrac{1}{6}\) : \(\dfrac{1}{14}\))]
B = -1: \(\dfrac{3}{7}\): (- \(\dfrac{7}{3}\))
B = 1 \(\times\) \(\dfrac{7}{3}\) \(\times\) \(\dfrac{3}{7}\)
B = 1
c)
Ta có :\(2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{1+\dfrac{1}{2}}}}\)
\(=2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{\dfrac{3}{2}}}}\) \(=2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{2}{3}}}\) \(=2+\dfrac{1}{1+\dfrac{1}{\dfrac{8}{3}}}\) \(=2+\dfrac{1}{1+\dfrac{3}{8}}\) \(=2+\dfrac{1}{\dfrac{11}{8}}\) \(=2+\dfrac{8}{11}\) \(=\dfrac{30}{11}\)
d) \(\left(\dfrac{1}{3}\right)^{-1}-\left(-\dfrac{6}{7}\right)^0+\left(\dfrac{1}{2}\right)^2:2\)
\(=3-1+\left(\dfrac{1}{2}\right)^2:2\)
\(=3-1+\dfrac{1}{4}:2\)
\(=3-1+\dfrac{1}{8}\)
\(=\dfrac{17}{8}\)
\(a.\)
\(\left[6.\left(-\dfrac{1}{3}\right)^2-3\left(-\dfrac{1}{3}\right)+1\right]:\left(-\dfrac{1}{3}-1\right)\)
\(=\left[6.\dfrac{1}{9}+1+1\right]:\left(-\dfrac{4}{3}\right)\)
\(=\left(\dfrac{8}{3}\right):\left(-\dfrac{4}{3}\right)\)
\(=\left(\dfrac{8}{3}\right).\left(-\dfrac{3}{4}\right)\)
\(=-2\)
\(b.\)
\(\dfrac{\left(\dfrac{2}{3}\right)^3.\left(-\dfrac{3}{4}\right)^2.\left(-1\right)^{2003}}{\left(\dfrac{2}{5}\right)^2.\left(-\dfrac{5}{12}\right)^3}\)
\(=\dfrac{\dfrac{8}{27}.\dfrac{9}{16}.\left(-1\right)}{\dfrac{4}{25}.\left(-\dfrac{125}{1728}\right)}\)
\(=\dfrac{-\dfrac{1}{6}}{-\dfrac{5}{432}}\)
\(=\dfrac{72}{5}\)
\(a,=\dfrac{13}{50}\cdot\dfrac{50}{13}\cdot\left(-\dfrac{31}{2}\right)\cdot\dfrac{169}{2}=-\dfrac{5239}{2}\\ b,=\dfrac{-\dfrac{49}{100}\cdot\left(-125\right)}{-\dfrac{343}{27}\cdot\dfrac{81}{16}\cdot\left(-1\right)}=\dfrac{\dfrac{245}{4}}{\dfrac{1029}{16}}=\dfrac{245}{4}\cdot\dfrac{16}{1029}=\dfrac{20}{21}\)
a) \(\dfrac{13}{50}.\left(-15.5\right):\dfrac{13}{50}.84\dfrac{1}{2}=\dfrac{13}{50}.-75:\dfrac{13}{50}.\dfrac{169}{2}=-\dfrac{75.169}{2}=-\dfrac{12675}{2}\)
b) \(\dfrac{\left(-0,7\right)^2.\left(-5\right)^3}{\left(-2\dfrac{1}{3}\right)^3.\left(1\dfrac{1}{2}\right)^4.\left(-1\right)^5}=\dfrac{0,49.\left(-125\right)}{-\dfrac{343}{27}.\dfrac{81}{16}.\left(-1\right)}=-\dfrac{\dfrac{245}{4}}{\dfrac{1029}{16}}=\dfrac{20}{21}\)
a: \(x=\left(-\dfrac{2}{3}\right)^5:\left(-\dfrac{2}{3}\right)^2=\left(-\dfrac{2}{3}\right)^3=-\dfrac{8}{27}\)
b: =>x-1/2=1/3
=>x=5/6
c: =>2/3x-1=0 hoặc 3/4x+1/2=0
=>x=3/2 hoặc x=-1/2:3/4=-1/2*4/3=-4/6=-2/3
d =>4/9:x=10/3:9/4=10/3*4/9=40/27
=>x=4/9:40/27=4/9*27/40=108/360=3/10
a) Bổ sung cho đầy đủ đề
b) (3x - 1)/4 = (2x - 5)/3
3(3x - 1) = 4(2x - 5)
9x - 3 = 8x - 20
9x - 8x = -20 + 3
x = -17
c) Điều kiện: x ≠ -1/3
3/(-2) = (x - 3)/(3x + 1)
3.(3x + 1) = -2(x - 3)
9x + 3 = -2x + 6
9x + 2x = 6 - 3
11x = 3
x = 3/11 (nhận)
Vậy x = 3/11
\(a,0,5+\dfrac{1}{3}+0,4+\dfrac{5}{7}-\dfrac{1}{6}-\dfrac{4}{35}\\ =\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{2}{5}+\dfrac{5}{7}-\dfrac{1}{6}-\dfrac{4}{35}\\ =\dfrac{5}{6}+\dfrac{39}{35}-\dfrac{1}{6}-\dfrac{4}{35}\\ =\left(\dfrac{5}{6}-\dfrac{1}{6}\right)+\left(\dfrac{39}{35}-\dfrac{4}{35}\right)\\ =\dfrac{2}{3}+1\\ =\dfrac{4}{3}.\)
\(b,\left(3-\dfrac{1}{4}+\dfrac{2}{3}\right)-\left(5+\dfrac{1}{3}-\dfrac{6}{5}\right)-\left(-6-\dfrac{7}{4}+\dfrac{3}{2}\right)\\ =3-\dfrac{1}{4}+\dfrac{2}{3}-5-\dfrac{1}{3}+\dfrac{6}{5}+6+\dfrac{7}{4}-\dfrac{3}{2}\\ =\left(3-5+6\right)+\left(-\dfrac{1}{4}+\dfrac{7}{4}\right)+\left(\dfrac{2}{3}-\dfrac{1}{3}\right)+\left(\dfrac{6}{5}+\dfrac{7}{4}\right)\\ =4-\dfrac{3}{2}+\dfrac{1}{3}+\dfrac{59}{20}\\ =\dfrac{5}{2}+\dfrac{1}{3}+\dfrac{59}{20}\\ =\dfrac{17}{6}+\dfrac{59}{20}\\ =\dfrac{347}{60}.\)
\(c,\dfrac{1}{3}-\dfrac{3}{4}-\left(-\dfrac{3}{5}\right)+\dfrac{1}{64}-\dfrac{2}{9}-\dfrac{1}{36}+\dfrac{1}{15}\\ =\dfrac{1}{3}+\dfrac{3}{4}+\dfrac{3}{5}+\dfrac{1}{64}-\dfrac{2}{9}-\dfrac{1}{36}+\dfrac{1}{15}\\ =\left(\dfrac{1}{3}-\dfrac{2}{9}\right)+\left(\dfrac{3}{4}-\dfrac{1}{36}\right)+\left(\dfrac{3}{5}+\dfrac{1}{15}\right)+\dfrac{1}{64}\\ =\dfrac{1}{9}+\dfrac{13}{18}+\dfrac{2}{3}+\dfrac{1}{64}\\ =\dfrac{3}{2}+\dfrac{1}{64}\\ =\dfrac{65}{64}.\)
Bài 1:
a) \(3^7:3^5-\left(\dfrac{5}{17}\right)^0=3^{7-5}-1=3^2-1=9-1=8\)
b) \(\left(\dfrac{5}{2}\right)^{13}:\left(\dfrac{1}{2}+2\right)^3\)
\(=\left(\dfrac{5}{2}\right)^{13}:\left(\dfrac{5}{2}\right)^3\)
\(=\left(\dfrac{5}{2}\right)^{10}\)
c) \(8.\left(\dfrac{1}{4}\right)^3+\left(\dfrac{2}{27}\right)^0-\dfrac{1}{8}\)
\(=8.\dfrac{1}{64}+1-\dfrac{1}{8}\)
\(=\dfrac{1}{8}+1-\dfrac{1}{8}\)
\(=1\)
Bài 2:
a) \(\dfrac{3^4.4^4}{6^4}=\dfrac{3^4.\left(2^2\right)^4}{\left(2.3\right)^4}=\dfrac{3^4.2^8}{2^4.3^4}=\dfrac{2^8}{2^4}=2^4=16\)
b) \(\dfrac{15^3}{10^3}=\dfrac{\left(3.5\right)^3}{ \left(2.5\right)^3}=\dfrac{3^3.5^3}{2^3.5^3}=3^3:2^3=\dfrac{27}{8}\)
c) \(\dfrac{4^2.12^5}{9^2.2^{10}}=\dfrac{\left(2^2\right)^2.\left[3.\left(2^2\right)\right]^5}{\left(3^2\right)^2.2^{10}}=\dfrac{2^4.3^5.2^{10}}{3^4.2^{10}}=2^4.3=16.3=48\)
d) \(\dfrac{6^2+5.2^2+4}{15}=\dfrac{\left(2.3\right)^2+5.2^2+2^2}{15}=\dfrac{2^2.3^2+5.2^2+2^2}{15}=\dfrac{2^2\left(3^2+5+1\right)}{15}=\dfrac{2^2.15}{15}=2^2=4\)
Bài 3:
a) \(\dfrac{\left(\dfrac{2}{3}\right)^3.\left(\dfrac{-3}{4}\right)^2.\left(-1\right)^5}{\left(\dfrac{2}{5}\right)^2.\left(\dfrac{-5}{12}\right)^2}\)
\(=\dfrac{\left(\dfrac{2}{3}\right)^3.\left(\dfrac{-3}{4}\right)^2.-1}{\left[\dfrac{2}{5}.\left(\dfrac{-5}{12}\right)\right]^2}\)
\(=\dfrac{\left(\dfrac{2}{3}\right)^3. \left(\dfrac{-3}{4}\right)^2.-1}{\left(\dfrac{-1}{6}\right)^2}\)
\(=\left(\dfrac{2}{3}\right)^3.\left[\left(\dfrac{-3}{4}\right).-6\right]^2.-1\)
\(=\left(\dfrac{2}{3}\right)^3.\left(\dfrac{9}{2}\right)^2.-1\)
\(=\left(\dfrac{2}{3}\right)^2.\dfrac{2}{3}.\left(\dfrac{9}{2}\right)^2.-1\)
\(=\left(\dfrac{2}{3}.\dfrac{9}{2}\right)^2.\dfrac{2}{3}.-1\)
\(=9.\dfrac{2}{3}.-1\)
\(=6.-1=-6\)
b) \(\dfrac{6^6+6^3.3^3+3^6}{-73}=\dfrac{\left(2.3\right)^6+\left(2.3\right)^3.3^3+3^6}{-73}=\dfrac{2^6.3^6+2^3.3^3.3^3+3^6}{-73}=\dfrac{2^6.3^6+2^3.3^6+3^6}{-73}=\dfrac{3^6\left(2^6+2^3+1\right)}{-73}=\dfrac{3^6.73}{-73}=\dfrac{3^6}{-1}=\left(-3\right)^6\)
\(#Wendy.Dang\)
Lần sau bnn gửi từng bài thôi nha, chứ như vầy nhiều quá thì làm không nổi mất. đánh máy nãy giờ lú luôn gòi nè :))
a
ĐK: \(x\ne5\)
\(\dfrac{x-5}{3}=\dfrac{-12}{5-x}\\ \Leftrightarrow\dfrac{x-5}{3}=\dfrac{12}{x-5}\\ \Leftrightarrow\left(x-5\right)^2=12.3=36\\ \Leftrightarrow\left\{{}\begin{matrix}x-5=6\\x-5=-6\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=11\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)
b
ĐK: \(x\ne0;x\ne-1\)
\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+....+\dfrac{2}{x\left(x+1\right)}=\dfrac{2023}{2024}\)
\(\Leftrightarrow\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+....+\dfrac{2}{x\left(x+1\right)}=\dfrac{2023}{2024}\\ \Leftrightarrow2\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+....+\dfrac{1}{x}.\dfrac{1}{x+1}\right)=\dfrac{2023}{2024}\\ \Leftrightarrow2\left(\dfrac{1}{2}-\dfrac{1}{x+1}\right)=\dfrac{2023}{2024}\\ \Leftrightarrow\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{2023}{4048}\\ \Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{2}-\dfrac{2023}{4048}=\dfrac{1}{4048}\\ \Leftrightarrow4048=x+1\\ \Leftrightarrow x=4047\left(tm\right)\)
a: =>(x-5)/3=12/(x-5)
=>(x-5)^2=36
=>x-5=6 hoặc x-5=-6
=>x=11 hoặc x=-1
b: =>\(2\left(\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{2023}{2024}\)
=>1/2-1/3+1/3-1/4+...+1/x-1/x+1=2023/4048
=>1/2-1/x+1=2023/4048
=>1/(x+1)=1/4048
=>x+1=4048
=>x=4047
tính A à
ta có
3A=3+1+\(\dfrac{1}{3}\)+\(\left(\dfrac{1}{3}\right)^2\)+.....+\(\left(\dfrac{1}{3}\right)^{2023}\)
3A-A=3-\(\left(\dfrac{1}{3}\right)^{2024}\)
⇒A=\(\dfrac{3-\left(\dfrac{1}{3}\right)^{2024}}{2}\)