K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2024

Ta có:

\(a^2+a+1=\left(a^2+2.a.\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(a+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall a\)

\(\Rightarrow\)PT đã cho vô nghiệm

Vậy không có giá trị \(a\) thỏa mãn \(P=a^{2014}+\dfrac{1}{a^{2014}}\)

13 tháng 3 2017

a, chắc bạn chép nhầm đề rồi đó nếu mà là 3ab thì k làm đc đâu

M=a+ a- b3 + b2 + 3ab2 -2ab +3ab2

= (a-b)3 +(a-b)2

= 343+49=392

b, P= -(3x+4x2+1/4x-2014)

= - [ (2x)2 -4x+1 +x +1/4x - 2015]

= -[ (2x-1)2- (2x-1)2/4x +1 -2015]

Max P = 2014   X=1/2

13 tháng 12 2016

Ta có: \(a+b+c=0\)

\(=>\left(a+b+c\right)^2=0\)

\(=>a^2+b^2+c^2+2ab+2bc+2ac=0\)

\(=>a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)

\(=>a^2+b^2+c^2=0\)

\(=>a^2+b^2+c^2=ab+bc+ac\)

\(=>2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ac\right)\)

\(=>\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)(nhân phân phối, đổi qua bên kia dấu bằng, tách thành hằng đẳng thức)

\(=>\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

\(=>\hept{\begin{cases}a-b=0\\b-c=0\\a-c=0\end{cases}}\)

\(=>a=b=c=0\)

***\(A=\left(a-1\right)^{22}+b^{12}+\left(c-1\right)^{2014}\)

\(A=\left(-1\right)^{22}+1+\left(-1\right)^{2014}\)

\(A=1+1+1\)

\(A=3\)

13 tháng 12 2016

Ta có

a + b + c = 0

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)

\(\Leftrightarrow\)a2 + b2 + c2 = ab + bc + ca

Mà ta có a2 + b2 + c2 \(\ge\) ab + bc + ca

Dấu = xảy ra khi a = b = c = 0

\(\Rightarrow\)(a - 1)22 + b12 + (c - 1)2014 = 1 + 0 + 1 = 2

5 tháng 8 2017

\(a+b+c=0\)

\(\Leftrightarrow\left(a+b+c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2=0\)

Mà \(a^2;b^2;c^2\ge0\forall a;b;c\) nên điều này xảy ra \(\Leftrightarrow a=b=c=0\)

\(\Rightarrow M=2018^{2014}+2018^{2014}-2018^{2014}=2018^{2014}\)

19 tháng 11 2017

cho mk đúng ko

Giải:
Ta có:
a^2014 + b^2014 + c^2014 = a^1007b^1007 + b^1007c^1007 + c^1007a^1007
=> 2(a^2014 + b^2014 + c^2014) = 2(a^1007b^1007 + b^1007c^1007 + c^1007a^1007)
=> ( a^1007 - b^1007 )^2 + (b^1007 - c^1007)^2 + ( c^1007 - a^1007)^2 = 0
=> a - b - c = 0
Vậy A = 0

19 tháng 11 2017

Giải:
Ta có:
a^2014 + b^2014 + c^2014 = a^1007b^1007 + b^1007c^1007 + c^1007a^1007
=> 2(a^2014 + b^2014 + c^2014) = 2(a^1007b^1007 + b^1007c^1007 + c^1007a^1007)
=> ( a^1007 - b^1007 )^2 + (b^1007 - c^1007)^2 + ( c^1007 - a^1007)^2 = 0
=> a - b - c = 0
Vậy A = 0

28 tháng 11 2015

A= (9n+2014-10n)(9n+2014+10n)
=(n-2014)(2014+19n)
=>2014-n pải chia hết cho 2014 =>n=2014
=>2014+19n sẽ chia hết cho 2014 =>19n= -2014=>n=-106
Mà n là số nhỏ nhất nên n=-106
tik mk nha pn

30 tháng 11 2019

a)\(A=\left(\frac{x+y}{x-2y}+\frac{3y}{2y-x}-3xy\right).\frac{x+1}{3xy-1}+\frac{x^2}{x+1}\)

\(=\left(\frac{x+y-3y}{x-2y}-3xy\right).\frac{x+1}{3xy-1}+\frac{x^2}{x+1}\)

\(=\left(\frac{x-2y}{x-2y}-3xy\right).\frac{x+1}{3xy-1}+\frac{x^2}{x+1}\)

\(=\left(1-3xy\right).\frac{-x-1}{1-3xy}+\frac{x^2}{x+1}\)

\(=-\left(x+1\right)+\frac{x^2}{x+1}\)`

\(=\frac{-\left(x+1\right)^2+x^2}{x+1}\)

\(=\frac{-x^2-2x-1+x^2}{x+1}\)

\(=\frac{-2x-1}{x+1}\)(1)

b) Thay \(x=-3,y=2014\)vào (1) ta được:

\(A=\frac{-2.\left(-3\right)-1}{-3+1}=\frac{-5}{2}\)

Vậy \(A=\frac{-5}{2}\)với x=-3 và y=2014

5 tháng 1 2019

chị khẳng định bài này quá đơn giản nhé

5 tháng 1 2019

\(A=\left(9n+2014\right)^2-100n^2\)

\(A=\left(9n+2014\right)^2-\left(10n\right)^2\)

\(A=\left(9n+2014-10n\right)\left(9n+2014+10n\right)\)

\(A=\left(2014-n\right)\left(2014+19n\right)\)

Để \(A⋮2019\)thì :

\(\orbr{\begin{cases}2014-n⋮2014\\2014+19n⋮2014\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}n⋮2014\\19n⋮2014\end{cases}}\)

Kết hợp với điều kiện n nhỏ nhất, ta có :

\(\orbr{\begin{cases}n=0\\n=0\end{cases}}\)

Vậy n = 0