Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,A.√2= √(4+2√3)-√(4-2√3)
= √(1+√3)2 -√( √3 -1)2
= 1+√3-√3+1= 2
=> A= 2/√2=√2
B2= (4+√15)2.(4-√15).(√10-√6)2
= (4+√15).1.(16-4√15)
= (4+√15).(4-√15).4
= 4
=> B = √4 = 2
Ta có A2 = 8 + \(2\sqrt{6-2\sqrt{5}}\)= 8 + 2(\(\sqrt{5}\)- 1)
= 6 + \(2\sqrt{5}\)= (\(\sqrt{5}+1\))2
Vậy A = \(\sqrt{5}+1\)
a) \(=\sqrt{6-2\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{16-2.4\sqrt{2}+2}}}\)
\(=\sqrt{6-2\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{\left(4-\sqrt{2}\right)^2}}}=\sqrt{6-2\sqrt{\sqrt{2}+\sqrt{12}+4-\sqrt{2}}}\)\(=\sqrt{6-2\sqrt{3+2\sqrt{3}+1}=\sqrt{6-2\sqrt{\left(\sqrt{3}+1\right)^2}}=\sqrt{6-2\left(1+\sqrt{3}\right)}}\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}=1+\sqrt{3}\)
b) Tương tự a) đ/s =5
a) \(\sqrt{11-2\sqrt{10}}\)
\(=\sqrt{10-2\sqrt{10}+1}\)
\(=\sqrt{\left(\sqrt{10}-1\right)^2}\)
\(=\sqrt{10}-1\)
b) \(\sqrt{21-6\sqrt{6}}\)
\(=\sqrt{\left(3\sqrt{2}\right)^2-2\cdot3\sqrt{2}\cdot\sqrt{3}+3}\)
\(=\sqrt{\left(3\sqrt{2}-\sqrt{3}\right)^2}\)
\(=3\sqrt{2}-\sqrt{3}\)
a)\(\sqrt{1-2\sqrt{10}+10}=\sqrt{\left(1-\sqrt{10}\right)^2}=\left|1-\sqrt{10}\right|=\sqrt{10}-1\)
(vì 1<\(\sqrt{10}\))
b)\(\Rightarrow\sqrt{2}\left[\left(\sqrt{4-\sqrt{7}}\right)-\left(\sqrt{4+\sqrt{7}}\right)\right]=\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)
\(=\sqrt{\left(1-\sqrt{7}\right)^2}-\sqrt{\left(1+\sqrt{7}\right)^2}=\sqrt{7}-1-1-\sqrt{7}=-2\Rightarrow\frac{-2}{\sqrt{2}}=-\sqrt{2}\)
\(=\left(6-2\sqrt{5}\right)\cdot\left(\sqrt{5}+1\right)\cdot\sqrt{6+2\sqrt{5}}\)
\(=\left(6-2\sqrt{5}\right)\left(6+2\sqrt{5}\right)\)
=36-20
=16
=\(\sqrt{\left(2+2\sqrt{6}+3\right)+\left(2\sqrt{10}+2\sqrt{15}\right)+5}\)
\(=\sqrt{\left[\left(\sqrt{2}\right)^2+2\sqrt{2}\sqrt{3}+\left(\sqrt{3}\right)^2\right]+\left(2\sqrt{2}\sqrt{5}+2\sqrt{3}\sqrt{5}\right)+\left(\sqrt{5}\right)^2}\)
\(=\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2+2\left(\sqrt{2}+\sqrt{3}\right)\sqrt{5}+\left(\sqrt{5}\right)^2}\)
\(=\sqrt{\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)^2}=\sqrt{2}+\sqrt{3}+\sqrt{5}.\)
`sqrt{10 + 4sqrt{6}}`
`=sqrt{10 + 2. 2sqrt{6}}`
`=sqrt{sqrt{6}^2 + 2. 2sqrt{6} + 2^2}`
`=sqrt{(sqrt{6}+ 2)^2}`
`= sqrt{6}+ 2`
\(\sqrt{10+4\sqrt{6}}=\sqrt{4.\dfrac{5}{2}+4\sqrt{6}}=2\sqrt{\dfrac{5\sqrt{6}}{2}}\)