K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7

Kí hiệu ϵ trong toán học là kí hiệu thuộc, dùng để biểu thị số thuộc 1 tập hợp.

24 tháng 7

Kí hiệu "∈" là "thuộc"  

Kí hiệu "\(\infty\)" là vô hạn 

a) 3 số tự nhiên liên tiếp đó có dạng: n; n + 1; n + 2

Ta có: \(n+\left(n+1\right)+\left(n+2\right)=3n+3=3\left(n+1\right)\) ⋮ 3

b) 4 số tự nhiên liên tiếp đó có dạng: n; n + 1; n + 2; n + 3

Ta có: \(n+\left(n+1\right)+\left(n+2\right)+\left(n+3\right)=4n+6\)

Mà: 4n chia hết cho 4 mà 6 không chia hết cho 4 

=> tổng 4 số tự nhiên k chia hết cho 4 

14 tháng 10 2017

a) Ta có : 2 số tự nhiên liên tiếp là : 2k và 2k + 1 trong đó 2k chia hết cho 2

b) Ta có : 3 số tự nhiên liên tiếp là 3k ; 3k + 1 và 3k + 2 trong đó 3k chia hết cho 3

c) Ta có : 3 số tự nhiên liên tiếp là 3k ; 3k + 1 và 3k + 2 

      3k + 3k + 1 + 3k + 2 = ( 3k + 3k + 3k ) + ( 2 + 1 ) = 9k + 3

\(\hept{\begin{cases}9k⋮3\\3⋮3\end{cases}\Rightarrow\left(9k+3\right)⋮3}\)

d) Tương tự

14 tháng 10 2017

tk mk nhá

9 tháng 7 2018

Câu 5 là chỗ cuối cùng là chia hết cho 7 nha .mình quên ghi

22 tháng 7 2016

cho sửa câu d nhé số tự nhiên liên tiếp là một số ko chia hết cho 4

3 tháng 12 2016

A, CÓ

B,KHÔNG

C,GOI BA SO TU NHIEN LIEN TIEP LA A,A+1, A+2,

(a+a+a)+ (1+2)

3a+3 chia hết cho 3 

vi 3chia hết cho 3

vậy tổng 3 số tự nhiên liên tiếp chia hết cho 3

 gọi 4 số tự nhiên liên tiếp là a,á+1,a+2,a+3

(a+a+a+a)+(1+2+3)

4a+6 không chia hết cho 3 vì 4 không chia hết cho 3

vậy tổng 4 số tự nhiên liên tiếp không chia hết cho 3

26 tháng 12 2016

nếu câu a và câu b có vì sao thì sẽ làm thế nào

a,vì trong 2 số tự nhiên liên tiếp luôn có 1 số chẵn  mà số chẵn thì chia hết cho 2 

mk chỉ biết vậy thôi

gọi 3 số tự nhiên liên tiếp là a ; a+1 ; a+2 ( a thuộc N )

ta có : a+(a+1)+(a+2)=3a+3=3 . ( a + 1 ) chia hết cho 3

vậy tổng của 3 số liên tiếp chia hết cho 3

21 tháng 12 2016

cậu thiếu bước trung gian đó là : a+(a+1)+(a+2)=(a+a+a)+(1+2)=3a+3=3.a+3.1=3.(a+1) chia hết cho 3. Vậy tổng của 3 số liên tiếp chia hết cho 3

14 tháng 12 2020

1/

Gọi 3 số tự nhiên liên tiếp là n; n+1; n+2

+ Nếu \(n⋮3\) Bài toán đã được c/m

+ Nếu n chia 3 dư 1 => \(n+2⋮3\)

+ Nếu n chia 3 dư 2 => \(n+1⋮3\)

Vậy trong 3 số tự nhiên liên tiếp bao giờ cũng có 1 số chia hết cho 3

2/ \(a-10⋮24\) => a-10 đồng thời chia hết cho 3 và 8 vì 3 và 8 nguyên tố cùng nhau

\(\Rightarrow a-10=8k\Rightarrow a=8k+10⋮2\)

\(a=8k+10=8k+8+2=8\left(k+1\right)+2=2.4.\left(k+1\right)+2\)

\(2.4.\left(k+1\right)⋮4\) => a không chia hết cho 4

3/

a/ Gọi 3 số TN liên tiếp là n; n+1; n+2

\(\Rightarrow n+n+1+n+2=3n+3=3\left(n+1\right)⋮3\)

b/ Gọi 4 số TN liên tiếp là n; n+1; n+2; n+3

\(\Rightarrow n+n+1+n+2+n+3=4n+6=4n+4+2=4\left(n+1\right)+2\)

Ta có \(4\left(n+1\right)⋮4\) => tổng 4 số TN liên tiếp không chia hết cho 4