K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2019

Câu hỏi của Biêtdongsaigon - Toán lớp 6 - Học toán với OnlineMath

Bạn tham khảo link này nhé!

5 tháng 6 2016

1/2! +2/3! +3/4! +... + 99/100! 
= (1/1! -1/2!) + (1/2! - 1/3!) + (1/3! -1/4!) + .... + (1/99! -1/100!) 
=1 - 1/100! <1 

5 tháng 6 2016

1/2! +2/3! +3/4! +... + 99/100! 
= (1/1! -1/2!) + (1/2! - 1/3!) + (1/3! -1/4!) + .... + (1/99! -1/100!) 
=1 - 1/100! <1 

12 tháng 11 2018

Ta có :

\(3^1+3^2+3^3+3^4+...+3^{99}+3^{100}\)

\(=(3^1+3^2)+(3^3+3^4)+...+(3^{99}+3^{100})\)

\(=3(1+3)+3^3(1+3)+...+3^{99}(1+3)\)

\(=3.4+3^3.4+...+3^{99}.4\)

\(=4.(3+3^3+...+3^{99})\)chia hết cho 4 

12 tháng 11 2018

\(3+3^2+3^3+3^4+...+3^{99}+3^{100}.\)

\(=3\left(1+3\right)+3^2\left(1+3\right)+...+3^{99}\left(1+3\right)\)

\(=4\left(3+3^2+...+3^{99}\right)⋮4\)

8 tháng 6 2016

1/2!= 1- 1/2 
1/3! = 1/2.3= 1/2 - 1/3 
1/4! = 1/2.3.4< 1/3.4 =1/3 -1/4 
.... 
1/100! = 1/...99.100 <1/99-1/100 
cộng vế với vế ta được điều phải chứng minh

21 tháng 10 2017

Giải:

\(3^1+3^2+3^3+3^4+...+3^{99}+3^{100}\)

\(=\left(3^1+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{99}+3^{100}\right)\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{99}\left(1+3\right)\)

\(=3.4+3^3.4+...+3^{99}.4\)

\(=4\left(3+3^3+...+3^{99}\right)⋮4\)

Vậy ...

Chúc bạn học tốt!