Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Biêtdongsaigon - Toán lớp 6 - Học toán với OnlineMath
Bạn tham khảo link này nhé!
1/2! +2/3! +3/4! +... + 99/100!
= (1/1! -1/2!) + (1/2! - 1/3!) + (1/3! -1/4!) + .... + (1/99! -1/100!)
=1 - 1/100! <1
1/2! +2/3! +3/4! +... + 99/100!
= (1/1! -1/2!) + (1/2! - 1/3!) + (1/3! -1/4!) + .... + (1/99! -1/100!)
=1 - 1/100! <1
Ta có :
\(3^1+3^2+3^3+3^4+...+3^{99}+3^{100}\)
\(=(3^1+3^2)+(3^3+3^4)+...+(3^{99}+3^{100})\)
\(=3(1+3)+3^3(1+3)+...+3^{99}(1+3)\)
\(=3.4+3^3.4+...+3^{99}.4\)
\(=4.(3+3^3+...+3^{99})\)chia hết cho 4
\(3+3^2+3^3+3^4+...+3^{99}+3^{100}.\)
\(=3\left(1+3\right)+3^2\left(1+3\right)+...+3^{99}\left(1+3\right)\)
\(=4\left(3+3^2+...+3^{99}\right)⋮4\)
1/2!= 1- 1/2
1/3! = 1/2.3= 1/2 - 1/3
1/4! = 1/2.3.4< 1/3.4 =1/3 -1/4
....
1/100! = 1/...99.100 <1/99-1/100
cộng vế với vế ta được điều phải chứng minh
Giải:
\(3^1+3^2+3^3+3^4+...+3^{99}+3^{100}\)
\(=\left(3^1+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{99}+3^{100}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{99}\left(1+3\right)\)
\(=3.4+3^3.4+...+3^{99}.4\)
\(=4\left(3+3^3+...+3^{99}\right)⋮4\)
Vậy ...
Chúc bạn học tốt!