K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Kẻ MH là đường cao tại M của ΔMNK

ΔMNK cân tại M

mà MH là đường cao

nên H là trung điểm của NK

=>\(HN=HK=\dfrac{NK}{2}=15\left(cm\right)\)

ΔMHN vuông tại H

=>\(MH^2+HN^2=MN^2\)

=>\(MH=\sqrt{25^2-15^2}=20\left(cm\right)\)

Xét ΔMNK có

MH,KT là các đường cao

nên \(S_{MNK}=\dfrac{1}{2}\cdot MH\cdot NK=\dfrac{1}{2}\cdot KT\cdot MN\)

=>\(KT\cdot25=20\cdot30=600\)

=>KT=600/25=24(cm)

25 tháng 3 2016

Xét tam giác vuông MNK có: \(NK^2=MK^2+NM^2\)(định lí Py-ta-go)                                                                                           \(NK^2=17^2+15^2\)                                                                                                                               \(NK^2=\)\(289+225=514\)                                                                                                                \(NK=\sqrt{514}\)

16 tháng 3 2018

Áp dụng định lý Py Ta Go vào tam giác MNK ta được:

NK^2=NM^2+MK^2

NK^2=9^2+12^2

NK^2=81+144

NK^2=225

=>NK=15

a: Xét ΔABM vuông tại A và ΔNBM vuông tại N có

BM chung

\(\widehat{ABM}=\widehat{NBM}\)

Do đó: ΔABM=ΔNBM

=>\(\widehat{AMB}=\widehat{NMB}\)

=>MB là phân giác của góc AMN

b: Ta có: NK//BM

=>\(\widehat{BMN}=\widehat{KNM}\)(hai góc so le trong) và \(\widehat{MKN}=\widehat{AMB}\)(hai góc đồng vị)

mà \(\widehat{NMB}=\widehat{AMB}\)

nên \(\widehat{KNM}=\widehat{MKN}\)

=>ΔMKN cân tại M

a: Xét ΔABM vuông tại A và ΔNBM vuông tại N có

BM chung

\(\widehat{ABM}=\widehat{NBM}\)

Do đó: ΔABM=ΔNBM

Suy ra: \(\widehat{AMB}=\widehat{NMB}\)

hay MB là tia phân giác của góc AMN

b: Ta có: MK//BM

nên \(\widehat{BMN}=\widehat{MNK}\)

3 tháng 3 2023

Xét \(\Delta ABM\) và \(\Delta NBM\)

\(\widehat{MAB}=\widehat{MNB}=90^o\)

\(MB\) chung

\(\widehat{MBA}=\widehat{MBN}\) (vì \(BM\) là tia phân giác của \(\widehat{ABN}\))

suy ra: \(\Delta ABM=\Delta NBM\) (Cạnh huyền-góc nhọn)

\(\Rightarrow\widehat{AMB}=\widehat{NMB}\) (Hai góc tương ứng)

\(\Rightarrow MB\) là tia phân giác của \(\widehat{AMN}\)

Vì \(NK\)//\(BM\) nên \(\widehat{BMN}=\widehat{MNK}\) (hai góc so le trong)

Và \(\widehat{BMA}=\widehat{NKM}\) (đồng vị)

Mà \(\widehat{AMB}=\widehat{NMB}\) (cmt)

Suy ra: \(\widehat{MNK}=\widehat{NKM}\) \(\Rightarrow\Delta MNK\) cân tại \(M\) (đpcm)

 

 

a: Xét ΔBAM vuông tại A và ΔBNM vuông tại N có

BM chung

góc ABM=góc NBM

=>ΔBAM=ΔBNM

=>góc AMB=góc NMB

=>MB là phân giác của góc AMN

b: NK//BM

=>góc BMN=góc KNM

=>góc KNM=góc AMB

=>góc MNK=góc MKN

=>ΔKMN cân tại M

a: NP=10cm

C=MN+MP+NP=24(cm)

b: Xét ΔMNK vuông tại M và ΔENK vuông tại E có

NK chung

\(\widehat{MNK}=\widehat{ENK}\)

Do đó: ΔMNK=ΔENK

c: Ta có: MK=EK

mà EK<KP

nên MK<KP

11 tháng 5 2022

Cảm ơn bạn nhìu😍😍

 

23 tháng 3 2016

tam giác MNB cân tại M hay vuông tại M vậy

23 tháng 3 2016

Vuông bạn ạ mình viết thiếu