
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


4.
Đáp án A đúng
\(y'=9x^2+3>0;\forall v\in R\)
6.
Đáp án B đúng
\(y'=3x^2-3=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)
\(\Rightarrow\) Hàm đồng biến trên các khoảng \(\left(-\infty;-1\right)\) và \(\left(1;+\infty\right)\)
Do \(\left(2;+\infty\right)\subset\left(1;+\infty\right)\) nên hàm cũng đồng biến trên \(\left(2;+\infty\right)\)

ĐKXĐ: \(2x-x^2\ge0\)
=>\(x^2-2x\le0\)
=>x(x-2)<=0
=>0<=x<=2
0<=x<=2 nên 0>=-x>=-2
=>0>=-x+1>=-2+1
=>0>=-x+1>=-1
\(y=\sqrt{2x-x^2}-x\)
=>\(y^{\prime}=\frac{\left(2x-x^2\right)^{\prime}}{2\cdot\sqrt{2x-x^2}}-1=\frac{2-2x}{2\cdot\sqrt{2x-x^2}}-1=\frac{1-x}{\sqrt{2x-x^2}}-1\)
Đặt y'<0
=>\(\frac{1-x}{\sqrt{2x-x^2}}-1<0\) (1)
=>\(\frac{1-x}{\sqrt{2x-x^2}}<1\)
TH1: 1-x<0
=>x>1
=>1<x<=2
Khi đó, ta sẽ có:\(\frac{1-x}{\sqrt{2x-x^2}}<0\) <1
=>(1) luôn đúng với mọi x>1
Kết hợp ĐKXĐ, ta được: 1<x<=2(2)
TH2: 1-x>=0
=>x<=1
(1) sẽ tương đương với: \(\frac{\left(1-x\right)^2}{2x-x^2}<1\)
=>\(\left(1-x\right)^2<2x-x^2\)
=>\(x^2-2x+1-2x+x^2\le0\)
=>\(2x^2-4x+1\le0\)
=>\(x^2-2x+\frac12\le0\)
=>\(x^2-2x+1-\frac12\le0\)
=>\(\left(x-1\right)^2\le\frac12\)
=>\(-\frac{\sqrt2}{2}\le x-1\le\frac{\sqrt2}{2}\)
=>\(\frac{-\sqrt2+2}{2}\le x\le\frac{\sqrt2+2}{2}\)
Kết hợp ĐKXĐ, ta được: \(\frac{-\sqrt2+2}{2}\le x\le\frac{\sqrt2+2}{2}\)
=>0,29<x<1,71(3)
Từ (2),(3) suy ra Hàm số nghịch biến trên khoảng (1;2)
=>Chọn C

ĐKXĐ: \(2x-x^2\ge0\)
=>\(x^2-2x\le0\)
=>x(x-2)<=0
=>0<=x<=2
0<=x<=2 nên 0>=-x>=-2
=>0>=-x+1>=-2+1
=>0>=-x+1>=-1
\(y=\sqrt{2x-x^2}-x\)
=>\(y^{\prime}=\frac{\left(2x-x^2\right)^{\prime}}{2\cdot\sqrt{2x-x^2}}-1=\frac{2-2x}{2\cdot\sqrt{2x-x^2}}-1=\frac{1-x}{\sqrt{2x-x^2}}-1\)
Đặt y'<0
=>\(\frac{1-x}{\sqrt{2x-x^2}}-1<0\) (1)
=>\(\frac{1-x}{\sqrt{2x-x^2}}<1\)
TH1: 1-x<0
=>x>1
=>1<x<=2
Khi đó, ta sẽ có:\(\frac{1-x}{\sqrt{2x-x^2}}<0\) <1
=>(1) luôn đúng với mọi x>1
Kết hợp ĐKXĐ, ta được: 1<x<=2(2)
TH2: 1-x>=0
=>x<=1
(1) sẽ tương đương với: \(\frac{\left(1-x\right)^2}{2x-x^2}<1\)
=>\(\left(1-x\right)^2<2x-x^2\)
=>\(x^2-2x+1-2x+x^2\le0\)
=>\(2x^2-4x+1\le0\)
=>\(x^2-2x+\frac12\le0\)
=>\(x^2-2x+1-\frac12\le0\)
=>\(\left(x-1\right)^2\le\frac12\)
=>\(-\frac{\sqrt2}{2}\le x-1\le\frac{\sqrt2}{2}\)
=>\(\frac{-\sqrt2+2}{2}\le x\le\frac{\sqrt2+2}{2}\)
Kết hợp ĐKXĐ, ta được: \(\frac{-\sqrt2+2}{2}\le x\le\frac{\sqrt2+2}{2}\)
=>0,29<x<1,71(3)
Từ (2),(3) suy ra Hàm số nghịch biến trên khoảng (1;2)
=>Chọn C



Mình nhìn rõ biểu thức trong ảnh là:
$$
V = \sqrt[3]{\,(x^2 - 4)^2\,}.
$$
---
### Phân tích:
* Đây là căn bậc 3 của $(x^2 - 4)^2$.
* Vì căn bậc 3 **luôn xác định với mọi số thực**, nên biểu thức có **tập xác định** là $\mathbb{R}$ (tất cả số thực).
---
### Biến đổi đơn giản hơn:
$$
V = \sqrt[3]{(x^2 - 4)^2} = \big|x^2 - 4\big|^{\tfrac{2}{3}}.
$$
---
✅ Kết luận:
* Tập xác định: $D = \mathbb{R}$.
* Dạng đơn giản: $V = |x^2 - 4|^{2/3}$.

a) Gọi K' là giao điểm của BI và EF, S là giao điểm của EJ và AB.
Ta có \(\left(FSBA\right)=-1\) (hàng điều hòa quen thuộc). Mặt khác, dễ thấy K'B là trung trực của FJ nên K'B cũng là tia phân giác của \(\widehat{FK'S}\)
Do đó, \(\widehat{AK'B}=90^o\). Khi đó tam giác AK'B vuông tại K' có trung tuyến K'M nên \(K'M=MB=\dfrac{1}{2}AB\)
Từ đó suy ra tam giác MK'B cân tại M \(\Rightarrow\widehat{MK'B}=\widehat{MBK'}=\widehat{K'BC}\)
Do đó MK'//BC. Chú ý rằng MN là đường trung bình của tam giác ABC \(\Rightarrow\) MN//BC. Vậy \(K'\in MN\) hay K' chính là giao điểm của MN và JE. Điều này có nghĩa là \(K'\equiv K\).
Như vậy, \(K,B,I\) thẳng hàng và \(\widehat{AKB}=90^o\) hay \(AK\perp BI\)
Lại có \(FJ\perp BI\) nên AK//FJ hay AK//HJ.
Tương tự, ta cũng có AH//KJ nên tứ giác AKJH là hình bình hành.
\(\Rightarrow\) HK, AJ cắt nhau tại trung điểm mỗi đoạn, hay JA đi qua trung điểm của HK.
câu a ý 2:
Gọi U là giao điểm của EF và BC, P là trung điểm BC, X là điểm chính giữa cung BC không chứa D của (O).
Có \(\widehat{XIB}=\widehat{IAB}+\widehat{IBA}=\widehat{XCB}+\widehat{IBC}=\widehat{XBC}+\widehat{IBC}=\widehat{XBI}\) nên tam giác XBI cân tại X \(\Rightarrow XB=XI\)
Tương tự, ta cũng có \(XB=XC=XI\) nên X là tâm (IBC)
Dễ thấy \(\widehat{XBD}=\widehat{XCD}=90^o\) nên XB, XC là tiếp tuyến tại B và C của (X).
\(\Rightarrow DC^2=DP.DX=DT.DG\) \(\Rightarrow\) Tứ giác TPXG nội tiếp.
\(\Rightarrow\widehat{DPT}=\widehat{XGT}=\widehat{XTG}=\widehat{XPG}\)
\(\Rightarrow90^o-\widehat{DPT}=90^o-\widehat{XPG}\)
\(\Rightarrow\widehat{UPT}=\widehat{UPG}\) . Do \(\widehat{UPG}+\widehat{GPC}=180^o\)
\(\Rightarrow\) \(\widehat{GPC}+\widehat{UPT}=180^o\)
Vì D là giao điểm của 2 tiếp tuyến tại B và C của đường tròn (X) nên GD là đối trung của tam giác GBC
\(\Rightarrow\widehat{BGT}=\widehat{PGC}\)
Lại có \(\widehat{GTB}=\widehat{GCP}\) \(\Rightarrow\Delta GTB\sim\Delta GCP\) \(\Rightarrow\widehat{GBT}=\widehat{GPC}\)
Lại có \(\widehat{GBT}=\widehat{GIT}\) nên \(\widehat{GPC}=\widehat{GIT}\)
Kết hợp với \(\widehat{GPC}+\widehat{UPT}=180^o\), ta có \(\widehat{GIT}+\widehat{UPT}=180^o\)
\(\Rightarrow\) Tứ giác ITPJ nội tiếp.
Mặt khác, \(\left(BCJU\right)=-1\) và P là trung điểm BC nên \(\overline{UJ}.\overline{UP}=\overline{UB}.\overline{UC}\) (hệ thức Maclaurin)
\(\Rightarrow P_{U/\left(ITPJ\right)}=P_{U/\left(X\right)}\)
\(\Rightarrow\) U nằm trên trục đẳng phương của đường tròn (ITPJ) và (X), mà IT là trục đẳng phương của 2 đường tròn này nên U, I, T thẳng hàng.
Xét cực và đối cực đối với (I). Kí hiệu \(d_Y\) là đối cực của Y đối với (I).
Ta có \(\left(BCJU\right)=-1\) \(\Rightarrow J\in d_U\)
Lại có \(U\in EF\equiv d_A\Rightarrow A\in d_U\)
Do đó \(JA\equiv d_U\) \(\Rightarrow JA\perp UI\) hay \(JA\perp IT\) (đpcm)