K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2024

Ta có: \(\left\{{}\begin{matrix}x\left(x-3y\right)=4\left(y^2+2\right)\left(1\right)\\\left(xy-4\right)\left(x+y\right)=8\left(2\right)\end{matrix}\right.\)

\(\left(2\right)\Rightarrow xy-4;x+y\ne0\)

\(\left(1\right)\Leftrightarrow x^2-3xy-4y^2=8\) (*)

Từ (*) và (2) \(\Rightarrow x^2-3xy-4y^2=\left(xy-4\right)\left(x+y\right)\)

\(\Leftrightarrow x\left(x-4y\right)+y\left(x-4y\right)=\left(xy-4\right)\left(x+y\right)\)

\(\Leftrightarrow\left(x+y\right)\left(x-4y\right)=\left(x+y\right)\left(xy-4\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\left(L\right)\\x-4y=xy-4\end{matrix}\right.\) \(\Leftrightarrow x\left(1-y\right)+4\left(1-y\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(1-y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-4\\y=1\end{matrix}\right.\)

x = -4 thay vào (*), ta được: \(16-3.\left(-4\right)y-4y^2=8\)

\(\Leftrightarrow8+12y-4y^2=0\) \(\Leftrightarrow y^2-3y-2=0\) 

\(\Leftrightarrow y=\dfrac{3\pm\sqrt{17}}{2}\) ( dùng \(\Delta\) )

y=1 thay vào (*), ta được: \(x^2-3x-4=8\)

\(\Leftrightarrow x^2-3x-12=0\) \(\Leftrightarrow x=\dfrac{3\pm\sqrt{57}}{2}\)

Vậy ...

29 tháng 12 2019

\(\hept{\begin{cases}x^2+y+x^3y+xy^2+xy=\frac{-5}{4}\\x^4+y^2+xy\left(1+2x\right)=\frac{-5}{4}\end{cases}}\)

29 tháng 12 2019

\(\Leftrightarrow\hept{\begin{cases}x^2+y+x^3y+xy^2+xy=\frac{-5}{4}\\x^4+2x^2y+y^2+xy=\frac{-5}{4}\end{cases}\Leftrightarrow\hept{\begin{cases}x^2+y+xy\left(x^2+y\right)+xy=\frac{-5}{4}\left(1\right)\\\left(x^2+y\right)^2+xy=\frac{-5}{4}\left(2\right)\end{cases}}}\)

Đặt x2 + y = a ; xy = b

Khi đó hệ phương trình trở thành : \(\hept{\begin{cases}a+ab+b=\frac{-5}{4}\\a^2+b=\frac{-5}{4}\end{cases}}\)\(\Leftrightarrow a+ab-a^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=0\\b-a+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2+y=0\\xy-\left(x^2+y\right)+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}y=-x^2\\x^2+y=xy+1\end{cases}}}\)

với y = -x2 thay vào ( 2 ), ta có : x . ( -x2 ) = \(\frac{-5}{4}\)\(\Rightarrow x=\sqrt[3]{\frac{5}{4}}\Rightarrow y=-\sqrt[3]{\frac{25}{16}}\)

với x2 + y = xy + 1 \(\Leftrightarrow\left(x^2-1\right)-\left(xy-y\right)=0\Leftrightarrow\left(x-1\right)\left(x+1-y\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x=y-1\end{cases}}\)từ đó suy ra \(y=\frac{-3}{2}\)

Vậy ....

NV
21 tháng 3 2021

Bạn coi lại đề, hệ này ko giải được

Pt bên dưới là \(xy\left(y^2+3y+3\right)=4\) thì giải được

21 tháng 3 2021

à số 3 đó a

26 tháng 10 2018

Từ \(x^2y^2+4=2\Rightarrow x^2y^2=-2\)(vô lí)

-> hệ vô nghiệm

Vậy

22 tháng 6 2018

Ta có: \(\hept{\begin{cases}\left(\frac{1}{x}+y\right)+\left(\frac{1}{x}-y\right)=\frac{5}{8}\\\left(\frac{1}{x}+y\right)-\left(\frac{1}{x}-y\right)=-\frac{3}{8}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{2}{x}=\frac{5}{8}\\2y=-\frac{3}{8}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{16}{5}\\y=-\frac{3}{16}\end{cases}}}\)

28 tháng 1 2020

Câu dễ làm trước !

b) \(\hept{\begin{cases}x^4+x^2y^2+y^4=481\\x^2+xy+y^2=37\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x^2+y^2\right)-x^2y^2=481\\x^2+xy+y^2=37\end{cases}}\) 

\(\Leftrightarrow\hept{\begin{cases}\left(x^2-xy+y^2\right)=13\\x^2+xy+y^2=37\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}xy=12\\x^2+y^2=25\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\left(x^2+2xy+y^2\right)-xy=37\\\left(x^2-2xy+y^2\right)+xy=13\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2=49\\\left(x-y\right)^2=1\end{cases}}\) (thay xy=12)

\(\Leftrightarrow\hept{\begin{cases}x=4\\y=3\end{cases}}\) hoặc \(\hept{\begin{cases}x=-4\\y=-3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x+y=7\\x-y=1\end{cases}}\\\hept{\begin{cases}x+y=-7\\x-y=-1\end{cases}}\end{cases}}\)